
The Hitchhiker’s 
Guide to Fuzzer 

Coverage Metrics



$ whoami

● > 10 years as a security researcher @ DSTG

● Principal vulnerability researcher @ Interrupt Labs

● Just submitted my PhD @ ANU 🎉



$ whoami

● > 10 years as a security researcher @ DSTG

● Principal vulnerability researcher @ Interrupt Labs

● Just submitted my PhD @ ANU 🎉

Me as a grad student 
(sometimes)



Let’s talk (more) 
about fuzzing



What is Fuzzing?

1. Generate random/invalid data

2. Execute target with said data

3. See if target breaks

4. Return to 1.



Fuzzing 101



Fuzzing 101



Fuzzing 101

Fuzzers find bugs by exploring a target’s 
state space

Approximate the target’s state space and 
track at runtime

● Must be lightweight!

Retain inputs uncovering new states



Fuzzing 101

Fuzzers find bugs by exploring a 
target’s state space

Approximate the target’s state space 
and track at runtime

● Must be lightweight!

Retain inputs uncovering new states

You can’t find bugs in states never covered



How do we measure 
coverage?



Abstraction!

Approximate program states

● Control flow

● Data flow



Control Flow

Decompose a function into a 
control-flow graph



Control Flow: Basic Blocks

Decompose a function into a 
control-flow graph

Record when nodes are covered



Control Flow: Basic Blocks

Decompose a function into a 
control-flow graph

Record when nodes are covered



Control Flow: Basic Blocks

Decompose a function into a 
control-flow graph

Record when nodes are covered



Control Flow: Basic Blocks

Decompose a function into a 
control-flow graph

Record when nodes are covered



Control Flow: Basic Blocks

Decompose a function into a 
control-flow graph

Record when nodes are covered

What’s the problem?



Control Flow: Edges

Decompose a function into a 
control-flow graph

Record when nodes edges are covered



Control Flow: Edges

Label nodes (at compile time)



Control Flow: Edges

At start of each block (at runtime):

1. Edge ID = Prev block ^ Curr block
2. Prev block = Right-shift Curr block



Control Flow: Edges

At start of each block (at runtime):

1. Edge ID = Prev block ^ Curr block
2. Prev block = Right-shift Curr block

What’s the problem?



Control Flow: “Better” Edges

Transform the CFG and split critical 
edges



Control Flow: “Better” Edges

Transform the CFG and split critical 
edges

An edge whose destination has multiple 
predecessors and source has multiple 
successors



Control Flow: “Better” Edges

Transform the CFG and split critical 
edges

An edge whose destination has multiple 
predecessors and source has multiple 
successors

Insert a “dummy” block. Now, block coverage => edge coverage



What else can we do 
with control flow?



Context Sensitivity

Consider the calling context

I.e., the chain of function calls leading to 
current location



Context Sensitivity

Label nodes and functions (at compile time)

At function call and return (at runtime):

1. Call ctx = Call ctx ^ Function ID

At start of each block (at runtime):

1. Edge ID = Prev block ^ Curr block ^ Call ctx
2. Prev block = Right-shift Curr block



Context Sensitivity, Issues

Return of collisions

● Requires increasing coverage map size => slowdown

“Queue explosion”

● Retain useless seeds



Predictive Context Sensitivity

Function cloning

● Turn a context-insensitive analysis to a 
context-sensitive analysis

● No more collisions!



Predictive Context Sensitivity

Can’t clone everything

● Use static analysis to inform 
context-sensitivity

● Favor call sites that see a higher 
diversity of for incoming data flow in 
function arguments

● Use points-to analysis to determine 
diversity



There’s that “data 
flow” thing again…



Data Flow Analysis

Process of collecting information about the ways variables are defined 
and used in a program

In compilers:

● Enables optimizations

In testing:

● Useful technique for measuring coverage



Defining Data Flow Coverage



Data-flow coverage 
is the tracking of 
def-use chains 
executed at runtime



Def-Use Chain Coverage

Def site: Variable allocation site (static or dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site



Def-Use Chain Coverage

Def site: Variable allocation site (static or dynamic)

Use site: Variable access (read and/or write)

Def-use chain: Path between a def and use site

Need an efficient implementation





datAFLow

1. Embed def-site IDs into objects

2. Reduce data-flow tracking to a 
metadata management problem

3. Now, def-site IDs are the metadata to 
retrieve at a use site



Can we combine 
control + data flow?



So what actually 
works?





Key Findings

Speed matters

● Dumb + fast > smart + slow

Different coverage metrics find different bugs

● This occurs even when coverage of one metric is less than another

In most programs, control flow subsumes data flow



Key Questions

● What other ways can we approximate a program’s state space?

● Can we perform an initial (static?) analysis of the target to guide what 
coverage metric to use?

● Ensemble techniques?




