
Code Analysis with…
Databases (!?)

Adrian Herrera

Then

$ whoami

Then

$ whoami

Now

Outline

● Why code analysis using databases?

● Datalog

○ Toy examples

● “Real-world” tools

Caveats

⚠ I am not an expert in any of this ⚠

Automated Code Auditing?

Silvio_Cesare_hacking.jpg

“Automated” Code Auditing

Manual analysis

● Human expertise/intuition ✅
● Doesn’t scale ❌

Grep

● Widely known/available ✅
● Doesn’t understand syntax, let alone semantics ❌

Weggli

● Search language = target language ✅
● Poor composition ❌

Weggli

Example query to find memcpy to stack
variables

Weggli

Example query to find memcpy to stack
variables

What if I want to compose queries?

What about across basic blocks?

What about across functions?

Can we do better?

Treat the program as a database!
Perform queries on “facts” stored in the DB +

infer additional “facts”

Datalog

● Declarative logic programming language

● Subset of Prolog

● Bottom up (vs. top-down) evaluation

○ Not Turing complete (guaranteed termination)

High-level Approach

● Stores facts

● New facts can be deduced via rules

● Facts can be queried

Who Uses This?

● CodeQL

● Glean

● Parfait

● DDisasm

Datalog

Datalog

Datalog

Datalog

Datalog

Datalog

Datalog

Syntax

Where do input facts come from?

Comma separated values (CSV)

1 2

2 3

Syntax

Outputs are also CSV

1 2

2 3

1 3

Let’s build some
code analyses

Steps

1. Extract syntactic facts

2. Derive facts

3. Perform queries

Steps

1. Extract syntactic facts

2. Derive facts

3. Query

1. Extract Syntactic Facts

● Decide how to represent code

● Ingest the codebase into the database

● Language dependent

○ Cclyzer++ extracts facts from LLVM IR

○ Doop extracts facts from Java Bytecode

○ Ddisasm extracts facts from assembly code

1. Extract Syntactic Facts

1. Extract Syntactic Facts

Steps

1. Extract syntactic facts

2. Derive facts

3. Query

2. Derive new facts

Steps

1. Extract syntactic facts

2. Derive facts

3. Query

3. Query

Run the Datalog engine

pointsTo

===============

v1 h1

v1 h2

v2 h2

v4 h3

v3 h3

“Real World” Analyses

Lots of cool tools available

● Ddisasm (Assembly)

● Cclyzer++ (LLVM)

● Doop (Java)

● Treeedb (TreeSitter)

Treeedb

● TreeSitter is an incremental parser

○ Works on broken code!

● Transforms code into Abstract Syntax Tree (AST)

● Treeedb puts AST into a Datalog database to query

Treeedb Example

Find all constant-value binary expressions:

Treeedb Example

CodeQL

CodeQL is a “Frankenstein Datalog” 🤖

Query to find all redundant “if” blocks

CodeQL

CodeQL

● Very powerful

● … But very complex

● Free to use on open-source code

Summary

● Treating a codebase as a database is powerful

● Starting to become more prevalent (e.g., CodeQL)

● Not just static analysis!

