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Outline

● Why code analysis using databases?

● Datalog

○ Toy examples

● “Real-world” tools



Caveats

⚠ I am not an expert in any of this ⚠



Automated Code Auditing?
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“Automated” Code Auditing

Manual analysis

● Human expertise/intuition ✅
● Doesn’t scale ❌

Grep

● Widely known/available ✅
● Doesn’t understand syntax, let alone semantics ❌

Weggli

● Search language = target language ✅
● Poor composition ❌



Weggli

Example query to find memcpy to stack 
variables



Weggli

Example query to find memcpy to stack 
variables

What if I want to compose queries?

What about across basic blocks?

What about across functions?



Can we do better?



Treat the program as a database!
Perform queries on “facts” stored in the DB + 

infer additional “facts”





Datalog

● Declarative  logic programming language

● Subset of Prolog

● Bottom up (vs. top-down) evaluation

○ Not Turing complete (guaranteed termination)



High-level Approach

● Stores facts

● New facts can be deduced via rules

● Facts can be queried



Who Uses This?

● CodeQL

● Glean

● Parfait

● DDisasm



Datalog
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Syntax

Where do input facts come from?

Comma separated values (CSV)

1 2

2 3



Syntax

Outputs are also CSV

1 2

2 3

1 3



Let’s build some
code analyses



Steps

1. Extract syntactic facts

2. Derive facts

3. Perform queries
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1. Extract Syntactic Facts

● Decide how to represent code

● Ingest the codebase into the database

● Language dependent

○ Cclyzer++ extracts facts from LLVM IR

○ Doop extracts facts from Java Bytecode

○ Ddisasm extracts facts from assembly code



1. Extract Syntactic Facts
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Steps

1. Extract syntactic facts

2. Derive facts

3. Query



2. Derive new facts



Steps

1. Extract syntactic facts
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3. Query



3. Query

Run the Datalog engine

---------------

pointsTo

===============

v1 h1

v1 h2

v2 h2

v4 h3

v3 h3



“Real World” Analyses

Lots of cool tools available

● Ddisasm (Assembly)

● Cclyzer++ (LLVM)

● Doop (Java)

● Treeedb (TreeSitter)



Treeedb

● TreeSitter is an incremental parser

○ Works on broken code!

● Transforms code into Abstract Syntax Tree (AST)

● Treeedb puts AST into a Datalog database to query



Treeedb Example

Find all constant-value binary expressions:



Treeedb Example



CodeQL

CodeQL is a “Frankenstein Datalog” 🤖

Query to find all redundant “if” blocks



CodeQL



CodeQL

● Very powerful

● … But very complex

● Free to use on open-source code



Summary

● Treating a codebase as a database is powerful

● Starting to become more prevalent (e.g., CodeQL)

● Not just static analysis!


