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AUSTRALIAN NATIONAL UNIVERSITY

Abstract

Doctor of Philosophy

State Space Search in Fuzzing

by Adrian HERRERA

Coverage-guided fuzzers are an indispensable tool in the software-testing toolbox. They
uncover bugs in a target program by subjecting it to a large number of automatically-
generated inputs. The fuzzer generates these inputs to search the corners of the
target’s (potentially vast) state space, where bugs are more likely to lurk. While
fuzzers have successfully uncovered bugs in a range of targets, they struggle to
discover “deep bugs” (i.e., bugs triggered under a complex set of control and data
dependencies). Moreover, security professionals deploying fuzzers lack observability
into fuzzers’ state space search (and thus an understanding of why these deep bugs
are missed).

This dissertation presents a set of techniques for reasoning about and improving a
fuzzer’s state space search, ultimately enhancing a fuzzer’s bug-finding ability.

First, we consider the task of bootstrapping this search process. Fuzzers typically
require an initial set of seeds (exemplar inputs accepted by the target) to kickstart their
state space search. We empirically evaluate various methods for selecting these seeds,
designing an optimal technique for reducing large seed sets in the process.

Second, we develop a new state space abstraction. Fuzzers traditionally abstract a
target’s state space based on control-flow features. We present an abstraction based on
data-flow features and demonstrate how our data-flow-based abstraction uncovers
bugs that traditional fuzzers fail to find.

Finally, we investigate how best to measure a fuzzer’s state space search after a
fuzzing campaign. We use static analysis to quantify a target’s state space, allowing
us to measure how much of this state space a fuzzer has explored. We empirically
evaluate several modern static analysis frameworks and propose new approaches for
assessing a fuzzer’s state space search.
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Chapter 1

Introduction

Modern software systems are growing exponentially larger and more complex. At
the same time, society is becoming more dependent on these software systems. For
example, the Linux kernel—which powers mobile phones, routers, servers, and
more—has grown from 13 million lines of code (LoC) in 2016 to over 20 MLoC
in 2021 (a 54 % increase in five years). This increased size and complexity results in
a greater likelihood of bugs and security vulnerabilities simply through the added
code. Moreover, efficiently analyzing these codebases to find bugs and security
vulnerabilities is becoming increasingly difficult (e.g., due to their large size; complex
interactions between multiple, heterogeneous components).

An abundance of automatic bug-finding techniques have been developed in an
attempt to keep up with the growing size and complexity of modern codebases. These
techniques are either static or dynamic; the former analyzes code without executing it,
while the latter observes executed code. Static analyses can reason over all possible
behaviors that may arise at run time, whereas dynamic analyses can only reason
about behaviors observed over a (finite) set of inputs. However, Rice’s theorem [180]
means that non-trivial semantic questions a static bug finder would like answered
(e.g., “is an arbitrary program free of security vulnerabilities?”) are undecidable. This
forces static analyses to be conservative, leading to false positives (i.e., claiming a bug
exists when it does not) and false negatives (i.e., misdetecting a bug). Unfortunately,
static analyses have garnered a reputation for being more harmful than helpful [45,
96, 109] (e.g., due to the prohibitively high number of false positives/negatives some
static bug finders emit) and difficult to scale [54, 182]. This has led to a renewed
interest in dynamic analyses, with a particular focus on fuzz testing.

Fuzz testing (“fuzzing”) has become the de facto dynamic analysis for discovering
bugs and vulnerabilities in large, complex codebases. In contrast to other bug-finding
and verification techniques—e.g., model checking [106], symbolic execution [14],
and static analysis [11]—fuzzing is (a) highly scalable, (b) free of false positives, and
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(c) unencumbered by models of the external environment. These advantages have
led to the widespread adoption of fuzzing, and the subsequent discovery of tens of
thousands of bugs in popular programs [3, 31, 33, 52, 181]. For example, Google’s
OSS-Fuzz service has helped fix over 8,800 vulnerabilities and 28,000 bugs across 850
open-source projects [31].

A fuzzer finds bugs by executing the target codebase (the “target”) multiple times
with a large number of automatically generated (and possibly malformed) inputs.
These inputs are generated to maximize exploration of the target’s state space. A
program state is a snapshot of memory and registers, as well as relevant aspects
of the operating system (OS) affecting the program (e.g., file descriptors, network
sockets) [7, 183]. The target’s state space is thus the set of all possible states a program
can be in, and the target’s behaviors are described by paths through this state space.
Intuitively, exploration of the target’s state space correlates with bug discovery [23];
after all, you can only trigger a bug in code executed.

Early fuzzers treated the target as a black box. In particular, these fuzzers had no
internal view of the target’s state space; their only feedback was whether the target
crashed when executing a given input. In contrast, modern fuzzers typically use
lightweight instrumentation to track which parts of the target’s state space they have
explored. This information is fed back to the fuzzer, helping to guide its state space
search.

Unfortunately, working with the previous definition of a target’s state space is un-
wieldy and quickly makes any program analysis (static or dynamic) intractable. In
particular, it is impractical for a fuzzer to measure a state with this level of detail;
prior work has shown the importance of maintaining a fuzzer’s iteration rate (the
number of inputs the target executes per unit of time), and this level of detail will
significantly reduce this iteration rate, harming fuzzing outcomes.

Abstraction is a solution to this problem, improving an analysis’ tractability [113]. In
fuzzing and symbolic execution, control abstraction is common, while data abstraction
is customary in abstract interpretation and model checking. In the former, a target
program’s state space is described by the set of computation sequences and control
flow; e.g., basic blocks/edges in the target’s control-flow graph (CFG) [8, 9, 16, 19, 21,
36, 37, 39, 40, 51, 61, 68, 142, 167]. In the latter, the target’s state space is described by
interpretations (i.e., valuations) of variables [48, 56, 106]. These abstractions provide
complementary views of the target’s state space.

Despite these abstractions, even trivially small programs can have innumerably
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large state spaces.1 This is particularly problematic for coverage-guided greybox
fuzzers—the focus of this dissertation—which randomly walk the target’s state
space.2 Notably, the fuzzer must satisfy increasingly complex control- and data-flow-
based dependencies to explore every corner of the target’s state space. Unfortunately,
despite improvements in fuzzing techniques, fuzzers still have difficulty solving
complex control- and data-flow constraints, leading to “deep” bugs continuing to
evade long-running fuzzing campaigns. Moreover, security professionals deploying
fuzzers lack observability into the fuzzer’s state space search, making it difficult to
understand why these bugs remain undiscovered.

1.1 Thesis

This dissertation describes techniques, frameworks, and methodologies for measuring
and improving a fuzzer’s ability to explore a target program’s state space. My thesis
is:

Thesis statement
Fuzzing outcomes (i.e., bug discovery) are enhanced by improving fuzzers’ state
space search.

We present a high-level overview of a typical fuzzing campaign in Fig. 1.1. Given
the target program to fuzz, a set of well-formed, exemplar inputs (of the format
accepted by the target) are sourced (①). As previously described, modern fuzzers
instrument the target to track state space exploration (②). Following this, the fuzzer
is run (③), mutating inputs to explore the target’s state space.3 Finally, the results are
analyzed after completing the campaign (④). This analysis includes triaging crashes
(to determine a bug’s root cause) and examining which parts of the state space were
explored.

We can improve a fuzzer’s state space search in several ways. First, rather than
starting the search “from scratch”, we can cover a subset of the search space before
beginning a fuzzing campaign (i.e., at ①). Second, we can avoid revisiting previously-
visited states, giving the fuzzer more time to discover new states (during ③). Third,
we can adopt different views of a target’s state space (at ②), revealing states that
may not be explicit in conventional abstractions. Finally, we can use more powerful

1I.e., the state space cannot be enumerated before the heat death of the universe.
2We leave details on how coverage-guided fuzzers operate to Chapter 2.
3We use the rabbit icon as a homage to the American Fuzzy Lop (AFL) fuzzer, named after the rabbit

breed.
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① Source inputs

② Instrument target

③ Run fuzzer

④ Analyze results

FIGURE 1.1: High-level overview of a fuzzing campaign.

techniques to gain deeper insight into a fuzzer’s state space search (at ④). This disser-
tation explores all of these improvements. Before outlining our specific contributions
(Section 1.3), we provide several examples to motivate our work.

1.2 Motivating Examples

CVE-2021-43527 [158] is a heap buffer overflow in Mozilla’s Network Security Ser-
vices (NSS) library that occurs when handling particular cryptographic signatures.
While the bug itself is unremarkable, the reasons why it remained undiscovered in
widely-fuzzed code for almost ten years [162] makes it a motivating example for this
dissertation.

How did this bug remain undiscovered for so long? One reason was “misleading
[coverage] metrics” [162]. A coverage metric guides a fuzzer’s state space search
by abstracting the target’s state space (we present a more thorough discussion of
fuzzer coverage metrics in Chapter 3). Moreover, fuzzers are commonly evaluated
and compared by how much of the target’s state space they explore (under a given
coverage metric). Despite “good test coverage for the vulnerable areas” [162], the bug was
only found when fuzzing with an “unconventional” coverage metric (specifically,
context-sensitive edge coverage, discussed further in Section 3.2.4).

Similarly, we use the program in Fig. 1.2 (adapted from Ormandy [162]) to demon-
strate the need to rethink fuzzers’ state space search. The bug at line 3 (in Fig. 1.2a
) is only triggered when foo is called directly from main (i.e., when data[i] ==

0x66 at line 34); buf cannot overflow if bar or baz are called (lines 4 and 5, re-
spectively). However, this is problematic for fuzzers driven by control-flow cover-
age alone. Consider a function call graph abstraction of the target’s state space
(Fig. 1.2b ) and two inputs (byte arrays represented as integer sequences, read
from the file descriptor fd at line 27): ι1 = {0xa, 0xb, 0xc, 0x61, 0x40, 0x40} and ι2 =

{0xa, 0xb, 0xc, 0x66, 0x40, 0x40}. Under this abstraction, ι1’s coverage is a superset
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1 static char buf [128];
2

3 void foo(int a, size_t b) { memset(buf , a, b); }
4 void bar(int a, size_t b) { foo(’A’, sizeof(buf)); }
5 void baz(int a, size_t b) { bar(a, sizeof(buf)); }
6

7 const struct handler_t {
8 char code;
9 void (* handler)(int , size_t);

10 } handlers [] = {{0x66 , foo}, {0x61 , bar}, {0x7a , baz }};
11

12 int sig_cmp(void *data , size_t start , size_t len) {
13 if (start + 3 > len)
14 return 1;
15

16 static const char sig[3] = {0xa, 0xb, 0xc};
17 return memcmp (&data[start], sig , 3);
18 }
19

20 int main(int argc , char *argv []) {
21 struct stat st;
22

23 int fd = open(argv[1], O_RDONLY);
24 fstat(fd , &st);
25 size_t size = st.st_size;
26 char *data = malloc(size);
27 read(fd, data , size);
28

29 if (sig_cmp(data , 0, size))
30 return 1;
31

32 for (unsigned i = 4; (i + 3) <= size; i += 3)
33 for (unsigned j = 0; j < 3; ++j)
34 if (data[i] == handlers[j].code)
35 handlers[j]. handler(data[i + 1], data[i + 2]);
36

37 free(data);
38 close(fd);
39

40 return 0;
41 }

(A ) Source.

main

bazbarsig_cmp

foo

(B ) Call graph. The dashed lines
indicate indirect calls that are re-

solved at run time.

main

bazbarsig_cmp

foo

(C ) Call graph for the input ι1 =
{0xa, 0xb, 0xc, 0x61, 0x40, 0x40}

(covered nodes are green).

main

bazbarsig_cmp

foo

(D ) Call graph for the input ι2 =
{0xa, 0xb, 0xc, 0x66, 0x40, 0x40}.

FIGURE 1.2: A simple dispatch table, adapted from Ormandy [162].
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of ι2’s coverage (see Figs. 1.2c and 1.2d ).4 This means that even before fuzzing begins,
corpus minimization (the process of minimizing the number of inputs that maximize
coverage of the target’s state space; discussed further in Chapter 4) would discard
inputs covering only foo in favor of inputs covering bar and baz (because covering
bar or baz also covers foo).

Observation
Conventional fuzzer coverage metrics (e.g., those based off of control flow) may
lead to inaccurate and misleading measurements of program state.

We also use Fig. 1.2 to demonstrate the need to avoid starting a fuzzing campaign
“from scratch”. In particular, sig_cmp (line 12) rejects inputs not starting with the
signature {0xa, 0xb, 0xc}. While this is a relatively simple check to overcome, one
can imagine more intricate file formats with more complex checks (e.g., a JavaScript
interpreter). In general, these checks are difficult for a fuzzer to “guess” (e.g., via
random mutation). However, if the fuzzer is bootstrapped with knowledge of the
input format (e.g., with exemplar inputs starting with the three-byte signature), then
the fuzzer can spend more time exploring the handler (rather than wasting cycles
overcoming the signature check).

Observation
A fuzzer’s ability to reach “deep” states in a target may depend on how the
fuzzer’s search was bootstrapped.

These examples demonstrate the need to rethink and improve fuzzers’ state space
search. This includes appropriately bootstrapping the state space search, adopting
coverage metrics that go beyond traditional control-flow-based metrics, and improv-
ing insights into what states the fuzzer has covered. The following section outlines
how we achieve this.

1.3 Structure and Contributions

This dissertation describes how we reason about and improve the state space explo-
ration capabilities of coverage-guided fuzzers. We start in Chapter 2 by providing
the background material necessary to motivate and understand our contributions.

4The same is true for a CFG abstraction; we use call graphs to simplify presentation.
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We also summarize the current state-of-the-art fuzzing research. The structure of the
remaining chapters echoes a fuzzing campaign (Fig. 1.1). In these chapters we make
the following contributions:

Systematization of coverage metrics. In Chapter 3 we explore the different ways a
fuzzer represents a program’s state space, presenting a systematization of coverage
metrics and taxonomy of greybox fuzzers.

The impact of seed selection and optimal corpus minimization. In Chapter 4
we focus on the initial set of inputs required to bootstrap the fuzzing process (① in
Fig. 1.1). We systematically (a) investigate how these initial input sets are constructed,
and (b) evaluate how they affect a fuzzer’s ability to find bugs. We also present
OPTIMIN, a fuzzing corpus minimization tool. Unlike other corpus minimizers,
OPTIMIN is capable of deriving an optimal corpus by encoding corpus minimization
as a boolean satisfiability (SAT) problem.

Data-flow-guided fuzzing. In Chapter 5 we present DATAFLOW, a greybox fuzzer
guided by lightweight data-flow profiling. Unlike most greybox fuzzers (i.e., those
discussed in Chapter 3), DATAFLOW’s instrumentation eschews control-flow cover-
age metrics in favor of def-use chain coverage (②).

Quantifying state space search. In Chapter 6 we look at measuring a fuzzer’s state
space search after a fuzzing campaign (④). We use static analysis to quantify a target’s
state space, aiming to produce a more-thorough analysis and evaluation of a fuzzer’s
ability to explore a target’s state space.

Comparing coverage metrics. Finally, in Chapter 7 we conduct a large-scale fuzzing
campaign to evaluate the full range of coverage metrics discussed throughout this
dissertation.

We support our contributions with extensive empirical evaluation on real-world
software. In total, we report on over 44 CPU-yr of fuzzing campaigns. Finally, we
release as open source all code associated with our contributions (details are provided
in each chapter).

1.3.1 Publications

While this dissertation is self-contained, its contributions draw from the following
published material:



8 Chapter 1. Introduction

• Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma: A Ground-Truth
Fuzzing Benchmark [84]. SIGMETRICS. 2020.

• Adrian Herrera, Hendra Gunadi, Shane Magrath, Michael Norrish, Mathias
Payer, and Antony L. Hosking. Seed Selection for Successful Fuzzing [92]. Interna-
tional Symposium on Software Testing and Analysis (ISSTA). 2021.

• Adrian Herrera, Mathias Payer, and Antony L. Hosking. Registered Report:
DATAFLOW– Toward a Data-Flow-Guided Fuzzer [91]. International Fuzzing
Workshop (FUZZING). 2022.

• Zhiyuan Jiang, Shuitao Gan, Adrian Herrera, Flavio Toffalini, Lucio Romerio,
Chaojing Tang, Manuel Egele, Chao Zhang, and Mathias Payer. EVOCATIO: Con-
juring Bug Capabilities from a Single PoC [107]. Computer and Communications
Security (CCS). 2022.

• Adrian Herrera, Mathias Payer, and Antony L. Hosking. DATAFLOW: Toward
a Data-Flow-Guided Fuzzer [90]. Transactions on Software Engineering and
Methodology (TOSEM). 2023.

• Simon Luo, Adrian Herrera, Paul Quirk, Michael Chase, Damith C. Ranasinghe,
Salil S. Kanhere. Make out like a (Multi-Armed) Bandit: Improving the Odds of Fuzzer
Seed Scheduling with T-Scheduler [132]. Asia Computer and Communications
Security (AsiaCCS). 2024.
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Chapter 2

Background and Related Work

2.1 Introduction

The term “fuzz testing” first appeared in an assignment in Prof. Barton Miller’s 1988
advanced operating system (OS) class1 at the University of Wisconsin [146]. Since
then, fuzz testing (“fuzzing”) as both a research field and industrial practice has
progressed in leaps and bounds. Nowadays, you can browse the proceedings of
the top security and software engineering conferences and find numerous fuzzing
papers, or read countless blog posts about how software companies are scaling-up
fuzzing to find bugs in their code (before it reaches production). Here, we distill this
prior work and describe both fuzzing fundamentals and the current state-of-the-art.

Chapter outline. This chapter provides the background material required to mo-
tivate and understand our research contributions. We begin by describing fuzzing
and how it relates to other software testing techniques. This is followed by an outline
of the different “shades” of fuzzer: black-, grey-, and white-box (Section 2.3) and a
more in-depth discussion of coverage-guided greybox fuzzing (Section 2.4), the focus of
this dissertation. We discuss related prior work in Section 2.5 and conclude with a
discussion on the experimental methodologies we use to ensure statistically-sound
empirical evaluation in Section 2.6.

2.2 Software Testing

Most software requires testing to ensure it operates as intended. A primary goal
of testing is to find bugs before the software is released to consumers. Figure 2.1
summarizes different testing techniques. Static techniques include formal verification
(mathematically proving the system is correct with respect to a formal specification),

1CS763, to be precise.
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• Formal verification

• Model checking

• Linting

Static

• Unit testing

• Mutation testing

• Fuzzing

Dynamic

FIGURE 2.1: Examples of software testing techniques.

model checking (checking a finite-state model of the system meets a given speci-
fication), and linting (pattern matching against known bug classes and suspicious
programming constructs). Dynamic techniques include unit tests (checking isolated
code—typically at the function level—exhibits expected behavior), mutation testing
(modifying the program—typically to cause an error—to ensure the test suite can
detect the modifications), and fuzzing (the focus of this dissertation).

While it is often impossible to identify all bugs and errors in software before it is
released, testing is an important component of the software development lifecycle
(SDLC). In particular, testing reduces the risk of security critical bugs that can be
exploited by attackers for nefarious purposes.

2.3 Fuzz Testing

Fuzzing is a dynamic software testing technique for finding bugs. While some forms
of testing (e.g., unit testing) attempt to verify code behavior based on valid inputs
(“positive” testing), fuzzing investigates code behavior on invalid or unexpected
inputs (“negative” testing). Fuzzers do this by executing code with automatically-
generated inputs and triggering crashes [138]. How a fuzzer produces these inputs
depends on whether it is generational or mutational.

Generational fuzzers (e.g., QuickFuzz [77], NAUTILUS [8], Gramatron [199], and
Favocado [53]) require a specification/model of the input format. They use this
specification to synthesize inputs. In contrast, mutational fuzzers (e.g., libFuzzer [188],
Angora [37], REDQUEEN [9] and INVSCOV [61]) use an initial corpus of seed inputs
(e.g., files, network packets, and environment variables) to bootstrap the input-
generation process. New inputs are then generated by mutating existing seeds in this
corpus. Mutational fuzzers are more common than generational fuzzers, so when
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discussing fuzzers we assume the mutational kind (rather than generational) unless
otherwise stated.

In addition to how inputs are produced, fuzzers are further categorized by the
“granularity of semantics [i.e., behaviors] a fuzzer observes in each fuzz run” [138]. These
categories—black-, grey-, and white-box—are summarized below.

2.3.1 Blackbox Fuzzers

Blackbox fuzzers have no internal view of the target; they can only observe input/out-
put relationships. Without any introspection, blackbox fuzzers are unencumbered
by run-time overheads (e.g., associated with instrumentation) and thus achieve high
iteration rates (i.e., the number of inputs executed per unit of time). However, they
cannot measure/reason about how much/which parts of the target’s state space have
been explored. Example blackbox fuzzers include Radamsa [87], the CERT Basic
Fuzzing Framework (BFF) [196], and CodeAlchemist [82].

2.3.2 Greybox Fuzzers

A greybox fuzzer uses lightweight instrumentation (typically compiler-based instru-
mentation that avoids the need for heavyweight program analysis at run time) to
collect run-time information about the target. This run-time information is fed back
to the fuzzer to guide it toward unexplored parts of the state space (and, ultimately,
uncover bugs). Example greybox fuzzers include American Fuzzy Lop (AFL) [231],
NAUTILUS [8], and DDFuzz [141]. We discuss greybox fuzzing in greater detail in
Section 2.4.

2.3.3 Whitebox Fuzzers

Whitebox fuzzers rely on heavyweight program analysis to guide target exploration.
This program analysis is typically provided by a symbolic execution engine (“sym-
bolic executor”) [14]. While capable of overcoming complex conditionals and other
fuzzer roadblocks, symbolic executors incur a high run-time cost (e.g., the KLEE [27]
and angr [194] symbolic executors are∼3,000× and∼321,000× slower than native ex-
ecution, respectively [230]). Moreover, path explosion—where branches and symbolic
memory accesses lead to a large number of program states that cannot be feasibly
explored—makes systematically exploring a target’s state space intractable.

These performance and scalability issues have led to the emergence of concolic
(concrete + symbolic) execution engines (“concolic executor”). Rather than exploring
the target’s state space (and following multiple execution paths simultaneously), a
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concolic executor traces the constraints for a single execution path and uses these
constraints to generate new inputs that follow new paths (that deviate from the single
execution path in a given branch). Example whitebox fuzzers include KLEE [27], Buz-
zFuzz [69], and SAGE [73]. Example concolic fuzzers include Driller [201], QSYM [230],
and SYMCC [173].

2.4 Coverage-guided Greybox Fuzzing

Coverage-guided greybox fuzzers are the most pervasive type of fuzzer: they have
successfully uncovered tens of thousands of bugs in a range of widely-used soft-
ware [3, 33, 52, 181]. We describe their operation in greater detail in this section.

Algorithm 1: Mutational greybox fuzzing.
Input: Target P, starting seeds S
Output: Crashing inputs S✗

1 S✗ ← ∅, CS ← ∅
2 if S = ∅ then /* Use the empty seed if no seeds are provided */
3 S ← {EmptySeed}
4 R ← Preprocess(P)
5 foreach ι ∈ S do /* Save starting seeds’ coverage */
6 Cι ← Execute(P, ι)
7 CS ← CS ∪Cι

8 repeat/* The main fuzzing loop */
9 ι← ChooseNext(S ,R)

10 e← AssignEnergy(ι,R)
11 foreach i from 1 to e do
12 ι′ ← MutateInput(ι,R)
13 Cι′ ← Execute(P, ι′)
14 if CrashDetected then
15 S✗ ← S✗ ∪ {ι′}
16 else if IsInteresting(Cι′ , CS ,R) then
17 S ← S ∪ {ι′}
18 CS ← CS ∪Cι′

19 until timeout reached or abort signal

Algorithm 1—adapted from Böhme, Pham, and Roychoudhury [22] and Böhme et al.
[24]—provides an overview of a generic coverage-guided greybox fuzzer. The user
provides an instrumented target program to fuzz, P, and an optional set of starting
inputs (“seeds”), S . An “empty seed” is used if S is not provided (lines 2 to 3). The
target may first undergo a preprocessing/analysis stage (line 4) before the fuzzer
enters the main fuzzing loop (lines 8 to 19), consisting of the following steps:

1. The fuzzer selects an input ι ∈ S (line 9) and assigns it an energy, e (line 10). This
energy “specifies the number of inputs to be generated from that seed [i.e., input]” [22].
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The assignment of e depends on the fuzzer (e.g., AFL assigns energy based on
the inputs execution time, coverage, and creation time).

2. The fuzzer mutates ι, producing ι’ (line 12). These mutation operations can be
structure agnostic or structure aware, depending on how much knowledge (if
any) the fuzzer has of P’s input format. Structure-agnostic mutations operate
on the raw input string and include bit-flipping, byte substitution, and string
concatenation. Structure-aware mutations are typically applied when P’s input
format is expressible by a grammar. In this case, mutations occur on an input’s
parse tree2 and include node insertion/deletion, replacing nodes with those
derived by a different set of grammar rules, and splicing parse trees together.

3. The target P is executed with ι’ (line 13). During execution, the fuzzer records
coverage information and stores this information in a coverage map Cι′ . This
coverage approximates a program’s state space and takes various forms (e.g.,
basic block, edges between basic blocks). For performance reasons, coverage is
typically based on an approximation of control-flow information.

4. The fuzzer detects crashes and updates the global coverage map (lines 14
and 18). Crash-inducing inputs are saved for further (offline) triage and analysis.
Further, an input is added to S if the fuzzer considers it “interesting”; i.e., it
satisfies some objective function (e.g., generates new coverage, gets “closer” to
a target location). Otherwise, the input is discarded (line 16). If interesting,
the coverage obtained by ι’ is added to the global coverage map CS , which
maintains coverage for all inputs.

5. Return to 1 (or terminate if the timeout is reached, line 19). The fuzzer may
increase its aggressiveness (i.e., increase the energy e) on already-explored
inputs.

The analysis reportRmay guide seed selection, energy assignment, mutation, and/or
assist in determining if ι’ is interesting (Steps 1, 2 and 4, respectively). For example,
directed fuzzers (e.g., AFLGo [24], CAFL [121], BEACON [99]) precompute a function
call graph to a guide the fuzzer toward specific target locations. An input is thus
interesting if it reduces the “distance” to a target location.

The software testing and analysis as discovery of species (STADS) model [17] pro-
vides an alternative, probabilistic model of fuzzing. STADS is an ecology-inspired

2A parse tree—also known as a derivation tree or concrete syntax tree—represents the syntactic structure
of ι according to a specific grammar.
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statistical framework that enables accurate extrapolation of a fuzzer’s future perfor-
mance (based on past performance). This is important to fuzzing because it “provides
statistical correctness guarantees with quantifiable accuracy” [17].

Under the STADS model, greybox fuzzing is considered a random walk through P’s
state space [22]. This walk is achieved by probabilistically sampling (with replace-
ment) from P’s input space, which is divided into subdomains called species. These
species are defined based on behavior observed when executing P with input ι’. Ob-
served behaviors are approximated by one or more coverage metrics and are recorded
in CS . Thus, improving the state space exploration capabilities of a greybox fuzzer is
equivalent to improving its ability to discover new species under STADS.

2.5 Related Work

Significant attention—from both academia and industry—has been given to many
of the elements and steps in Algorithm 1. We summarize this work in the following
sections.

2.5.1 Benchmark Suites

Appropriate benchmarks—from which P is commonly sourced—are required for
fair and meaningful fuzzer comparisons. Popular open-source software (e.g., GNU
Binutils [72]) are frequently used to demonstrate a fuzzer’s ability to discover zero-day
vulnerabilities (i.e., bugs that have not been patched). However, determining the root
cause of a “real-world” zero-day is a time-consuming and largely manual process,
increasing the time and effort required to evaluate and compare multiple fuzzers. To
rectify this, benchmarks such as LAVA [55], the Cyber Grand Challenge (CGC) [131],
UNIFUZZ [124], Fuzzer Test Suite (FTS) [75], FUZZBENCH [144], Magma [84], and
REVBUGBENCH (from FIXREVERTER [234]) have been developed. These benchmarks
evaluate and compare fuzzers across a range of performance metrics, including:
coverage profiles (FUZZBENCH); synthetic bug counts (LAVA, CGC, and REVBUG-
BENCH); and real-world bug counts (UNIFUZZ, FTS, and Magma). Is there a preferred
set of metrics for measuring fuzzing outcomes?

Code coverage has long been used as a proxy measure for a fuzzer’s bug-finding
ability: a bug cannot be found in code never executed. Thus, it is common for fuzzer
evaluations to use an independent code coverage metric to enable comparisons; com-
monly, lines of code (LoC) in the target (we revisit and expand on this approach in
Chapter 7). However, controversy surrounds the strength of the correlation between
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coverage profiles and bugs [102], with seemingly contradictory results across mul-
tiple works due to the incorrect use of statistical analyses (i.e., stratification) [42].
Even when the correlation is strong [23, 76, 117], the agreement on which fuzzer is
superior may be weak; i.e., “the fuzzer best at achieving coverage may not be best at finding
bugs” [23].

The potentially weak correlation between code coverage and bug finding has led to
the development of “bug-based” benchmarks. A fuzzer’s ultimate goal is to find bugs,
so why not measure this directly? Unfortunately, realistic bug-based benchmarks
are challenging to build and maintain: they require ground-truth knowledge of
bugs [84] and must be regularly updated to prevent overfitting [18, 23]. Moreover,
the distribution of bugs may not be uniform or related to the actual possibility of
bugs in the target [74].

The LAVA, CGC, and REVBUGBENCH benchmarks contain both a large number of
programs and bugs; however, these bugs—and, in the case of the CGC, programs—
are synthetic and are considered unrepresentative of “real-world” codebases (e.g.,
because of their small size). In contrast, Goerz et al. [74] use mutation analysis to
assess a fuzzer’s performance, creating (faulty) variants of real-world programs. In
contrast, Magma and UNIFUZZ contain both real-world targets and bugs, but the
former contains only a small number of each, while the latter has no ground truth to
validate results.

Table 2.1 summarizes our discussion on benchmark suites. We use both coverage-
and bug-based benchmarks throughout this dissertation; primarily FUZZBENCH and
Magma.

2.5.2 Preprocessing

Directed fuzzers (e.g., AFLGo [24], CAFL [121], and BEACON [99]) use a preprocess-
ing stage to determine program locations to drive the fuzzer toward. This prepro-
cessing stage computes a distance metric to the target location(s). The distance is
calculated using static control- and data-flow analyses, with the result stored inR.

We extend these static control- and data-flow analyses (and augment them with
analogous dynamic analyses) in Chapters 6 and 7 to more accurately measure and
reason about fuzzers’ state space exploration.

2.5.3 Seed Selection

Mutational fuzzers require an initial seed set to bootstrap the fuzzing process. Typi-
cally, these seed sets contain a small number of inputs that P is known to accept (i.e.,
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TABLE 2.1: Comparison of fuzzer benchmark suites. We characterize
benchmarks across three dimensions: (i) the targets making up the
benchmark; (ii) the bugs that exist across these targets (Goerz et al. [74]
use mutants rather than bugs); and (iii) the coverage measure used.
For both “targets” and “bugs” we count the number of targets/bugs
(“#”) and classify their type as “Real” or “Synthetic”. Bug density
is the mean number of bugs per target. Finally, ground truth may
be (a) available (“✓”), (b) available but not easily accessible (“H”), or

(c) unavailable (“✗”).

Targets Bugs
Benchmark # Type # Type Density Ground Truth Coverage

LAVA-M 4 R 2,265 S 566.25 ✓ −
CGC 131 S 590 S 4.50 H −
FTS 24 R 47 R 1.96 H Known source location
FUZZBENCH 32 R 8 R 0.25 H LoC
Magma 9 R 138 R 15.33 ✓ −
UNIFUZZ 20 R ? R ? ✗ LoC
REVBUGBENCH 10 R 7,910 S 791 ✓ −
Goerz et al. [74] 7 R 141,278 S 18,754 ✓ −
Open-source software − R ? R ? ✗ LoC

the seeds are “well-formed” and do not trigger errors). Perhaps counter-intuitively,
the “empty seed”—i.e., a zero-length seed—is also a popular starting seed because it
“is an easy way to baseline a significant variable in the input configuration” [115].

In contrast, generational fuzzers generate their initial seeds. For example, Quick-
Fuzz [77] generates seeds from file-format-handling libraries available in the Haskell
programming language. Finally, some prior work combines both mutational and
generational techniques. For example, Skyfire [215] learns a probabilistic context-
sensitive grammar (PCSG) from both an initial seed set and ANTLR [169] grammar,
and then uses the PCSG to generate uncommon inputs with diverse grammar struc-
tures (i.e., those structures with low probability). Similarly, SLF [228] is a “seedless
fuzzer” capable of generating valid seeds from scratch using mutational fuzzing.

We analyze both (a) prior work in seed selection, and (b) the impact seed selection
has on fuzzing outcomes in more detail in Chapter 4.

2.5.4 Seed Scheduling

“Interesting” inputs (i.e., leading to new coverage) are added to S . Given S grows
rapidly, what is the best approach for selecting the next input to mutate in ChooseNext?
To answer this question, CollAFL [67] introduced a suite of seed selection techniques
prioritizing inputs which (a) exercise edges in CS with many unexercised neighbor
edges, (b) exercise edges in CS with many unexercised descendant paths, and (c) exer-
cise paths containing many memory access operations. TortoiseFuzz [217] similarly
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prioritizes inputs exercising sensitive memory operations at different granularities
(function, loop, and basic block levels) to improve the discovery of memory safety
vulnerabilities. Finally, K-Scheduler [190] applies centrality measure from graph
analysis to approximate the likelihood of executing new code by mutating a given
input (and subsequently scheduling that input for mutation).

2.5.5 Energy Assignment

Once an input ιi ∈ S has been selected for mutation, how many times should this
input be mutated before selecting a new input ιj ∈ S? This count is determined
by how much energy e is assigned to ιi in AssignEnergy. Both AFLFast [22] and
AFLGo [24] demonstrated improvements when more energy was assigned to inputs
exercising low-frequency coverage elements in CS (compared to inputs exercising
high-frequency elements). This was achieved by modeling coverage-guided fuzzing
as a Markov chain. Similar improvements have been made using other statistical
models (e.g., Multi-Armed Bandit [212, 229]).

2.5.6 Mutation

The fuzzer must first decide where to mutate. Random selection of input bits/bytes
is highly inefficient, because most of the input may be unrelated to changes in P’s
behavior. Dynamic taint analysis (DTA) is commonly used to address this inefficiency
(e.g., in VUzzer [176], Angora [37], and ParmeSan [163]). DTA improves mutation
accuracy by tracking the flow of input bytes3 in P, informing the fuzzer which bytes
affect control flow (and hence which bytes to mutate). Unfortunately, accurate DTA is
computationally expensive and requires significant manual effort (e.g., to specify taint
policies) [47, 95, 192]. This has led to fuzzers avoiding DTA in favor of approximate
taint tracking. For example, REDQUEEN [9] and AFL++ [63] use “input-to-state
correspondence”, a technique based on the intuition that “parts of the input directly
correspond to the memory or registers at run time” [9]. Similarly, GREYONE [68] infers
taint by monitoring variable values during mutation. These approaches sacrifice
precision for run-time performance.

After deciding where to mutate, the fuzzer must choose how to mutate. Following
Section 2.4, this depends on how much knowledge the fuzzer has of the input struc-
ture. For example, NAUTILUS [8] uses grammar-aware mutations that operate on
a parse tree representation of s. Grammatron [199] improves the performance of
grammar-aware mutation by restructuring the parse tree as a finite state automaton.

3The exact granularity (e.g., bits, bytes) depends on the specific taint policy. The taint policy specifies
the relationship between an instruction’s input and output operand(s).
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Fuzzers typically resort to bit flipping, byte substitution, and string concatenation
when the input structure is unknown. Even if the complete input grammar/structure
is unknown, fuzzers may be able to leverage “dictionaries” containing keywords
from the input format (e.g., the PNG chunk specifiers IDAT, IEND, and PLTE). Rather
than blindly substituting random bytes, the fuzzer can instead substitute keywords
from the dictionary.

To alleviate the inefficiencies brought on by the randomness of the mutation process,
MOPT [134] uses particle swarm optimization to derive an optimal probabilistically
distribution from which a mutation operator is selected. Similarly, EMS [133] captures
mutation strategies from previous fuzz runs and uses this history to find interesting
inputs that trigger unique paths and crashes.

2.5.7 Execution

Blackbox fuzzers blindly execute P without any feedback mechanism. In contrast,
greybox fuzzers use positive feedback to drive the fuzzer toward unexplored parts
of P’s state space. A coverage map Cs′ is used to measure which parts of P’s state
space was executed with (mutated) input ι’.

We analyze different coverage metrics used by greybox fuzzers in Chapter 3. More-
over, we introduce a new coverage metric based on data flow coverage (specifically,
def -use chains) in Chapter 5.

2.5.8 Crash Detection

The simplest form of crash detection is to rely on the underlying hardware/OS to
report a violation (e.g., segmentation faults, divide-by-zero). Unfortunately, this ap-
proach may miss bugs (e.g., an out-of-bounds memory access may not necessarily trig-
ger a segmentation fault). Thus, sanitizers are often deployed to detect a wider variety
of bug classes more accurately. For example, AddressSanitizer (ASAN) [187] is used
for detecting memory safety violations, UndefinedBehaviorSanitizer (UBSAN) [210]
is used for detecting undefined behavior, and type confusion errors are detectable
with HexType [105]. Song et al. [197] provide a more detailed summary of other
sanitizers.

2.5.9 Stopping Condition

How long should a fuzzing campaign last? Klees et al. [115] found campaign timeouts
ranging from 1 h to days and weeks, with 24 h being the most common campaign
length. Further, Böhme, Liyanage, and Wüstholz [20] developed estimators for
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TABLE 2.2: Techniques used to ensure statistically-sound results.
“Summary” techniques are used to summarize a set of observations
(i.e., over a set of N trials). “Comparison” techniques enable compar-

isons of observations.

Bug finding Coverage profiles

Summary Restricted mean survival time (RMST) Arithmetic mean
Comparison log-rank test Mann-Whitney U-test

determining when to stop a fuzzing campaign such that the residual risk of a bug
remaining undiscovered is minimized.

2.6 Ensuring Statistically-Sound Results

Proper benchmarking is essential in systems security [118]. In particular, the highly-
stochastic nature of fuzzing (e.g., due to random mutations [223]) requires the use
of appropriate statistical techniques when analyzing results [5, 115]. We measure
fuzzing outcomes across two axes: bug finding and coverage profiles (the two most
common metrics used to analyze the results of a fuzzing campaign, per Section 2.5.1).
We adopt the following approaches (and terminology) to ensure statistical significance
when analyzing results across these two axes (summarized in Table 2.2).

2.6.1 Repeated, Independent Trials

We run one fuzzing campaign per {target× fuzzer×y} combination, where y is a depen-
dent variable4 that changes depending on the given evaluation (e.g., in Chapter 4 we
examine the effect different seed selection strategies have on fuzzing outcomes; here, y
is the set of seed selection strategies). Each campaign consists of N independent trials
of length T hours.

2.6.2 Bug Survival Time

We statistically analyze and compare time-to-bug based on the recommendations of
Böhme and Falk [19]. Following prior work [5, 211], we apply survival analysis [116]
to time-to-bug events. This allows us to handle censoring: individual trials where a
given bug is not found.

For each campaign (i.e., set of N repeated T hour trials) we model a bug’s survival
function—the probability of a bug being found over time—using the Kaplan-Meier
estimator [110]. Integrating this survival function with upper-bound T gives a bug’s

4An evaluation may have more than one dependent variable.
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RMST for a given campaign. Shorter bug survival times indicate better performance.
We report the RMST and 95 % confidence interval (CI) across each campaign.

We also use the log-rank test [140] to statistically compare bug survival times. The
log-rank test is computed under the null hypothesis that two {target× fuzzer×y} com-
binations share the same survival function. Thus, we consider two fuzzing campaigns
to have statistically-equivalent bug survival times if the log-rank test’s p-value > 0.05.
We use the log-rank test because it is non-parametric and thus makes no assumptions
about the underlying distribution of bugs.

2.6.3 Summary Statistics

We use both the arithmetic mean and 95 % CI to summarize non-bug-related fuzzing
results (e.g., coverage profiles generated by different fuzzers). We use bootstrap-
ping [57] to compute CIs, again because it is a non-parametric technique.

2.6.4 Statistical Significance

We use the non-parametric Mann-Whitney U-test [139] to compare and determine
the ranking of A and B, where A and B are non-bug-related fuzzing results (e.g.,
coverage profiles). A p-value > 0.05 implies a statistically-equivalent ranking.

2.7 Chapter Summary

This chapter gives an overview of fuzzing, including both fundamental concepts and
the state-of-the-art. We discussed coverage-guided greybox fuzzers in depth because
they are the most pervasive type of fuzzer and the focus of this dissertation.

In the next chapter, we delve deeper into the coverage metrics fuzzers use to measure
state space exploration. After this, we focus on our contributions to improve fuzzers’
state space exploration: (i) how we bootstrap the fuzzing process to lower the cost
of the initial state space search (Chapter 4); (ii) a data-flow-based coverage metric,
providing an alternative view of a program’s state space (Chapter 5); (iii) an inves-
tigation of techniques for measuring a fuzzer’s state space search (Chapter 6); and
(iv) a comprehensive evaluation of the coverage metrics discussed throughout this
dissertation (Chapter 7).
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Chapter 3

Coverage Metrics

Greybox fuzzers use one or more coverage metrics to abstract and approximate a
target’s state space. In doing so, the fuzzer maintains a notion of “progress”: ex-
panding coverage implies exploring new program behaviors. In this chapter, we
survey and analyze widely-used coverage metrics to understand their advantages
and disadvantages.

3.1 Introduction

A fuzzer finds bugs by maximizing its coverage of the target’s state space. Greybox
fuzzers are guided by a feedback loop based on one or more coverage metrics. Per
Algorithm 1 (Chapter 2), the coverage measured (in Cs) tells the fuzzer whether to
keep or discard a seed. An effective greybox fuzzer requires coverage metrics that are:
(i) accurate: program behaviors are accurately approximated; and (ii) performant:
run-time overheads are minimal. Accurate metrics lead to more-informed decisions
in IsInteresting (line 16 in Algorithm 1), guiding the fuzzer to explore more of
the target’s state space (and increasing the likelihood of finding bugs). In contrast,
performant metrics ensure that the fuzzer spends most cycles executing inputs. There
is a clear tension between these requirements: more accurate metrics require more
intrusive instrumentation to capture subtle changes in program state. But these
introduce higher run-time overheads.

Requirement

The accuracy of a fuzzer’s coverage metric(s) must be balanced with performance,
ensuring available cycles are spent finding as many bugs as possible.
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Chapter outline. Keeping these accuracy and performance requirements in mind,
the remainder of this chapter analyzes the coverage metrics used in 79 coverage-
guided greybox fuzzers published from 2013–2022.

3.2 Coverage Metrics in Theory and Practice

Figure 3.1 shows the genealogy of 79 fuzzers published from 2013–2022 and the
coverage metrics they use. To realize a coverage metric in practice, fuzzers introduce
inaccuracy to reduce run-time overheads (in both time and space). In the remainder of
this chapter we describe ideal coverage metrics and how they are realized in practice.

3.2.1 Basic Block

Basic-block (“block”) coverage is the simplest form of control-flow coverage,1 relying
exclusively on block labels. There is no universal approach for labeling a block:
UnTracer [151] uses static binary analysis to identify each block in the target and
assign it an integer label, while VUzzer [176] uses a block’s run-time address. The
simplicity of block coverage means that it can be universally applied with low run-
time overhead. However, this simplicity comes at a cost: fuzzers cannot distinguish
block sequences and simply count how many times they execute each block. This
limits the fuzzer’s ability to differentiate between a loop’s forward and backward
edges.

3.2.2 Edge

Edge coverage allows the fuzzer to differentiate between different orderings of the
same two blocks. An idealized edge can be described by pairing the previously-
executed block label lprev with the current block label l, capturing both intra- and inter-
procedural edges. Recording edge coverage this way requires double the memory
needed to record the same trace using block coverage. This, combined with the fact
that a target typically has many more edges than blocks, means that approximate
edge coverage is used in practice. We categorize techniques for approximating edge
coverage as one of: (i) coarse-grained probabilistic; (ii) coarse-grained link-time
optimization (LTO); and (iii) fine-grained control-flow graph (CFG) transformation.

Coarse-grained probabilistic. Randomly-assigned block labels are hashed together
to identify an edge between blocks. American Fuzzy Lop (AFL) [231]—perhaps the

1Function level coverage is even simpler but is too coarse-grained for fuzzers and is never used in
practice.
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most widely-used greybox fuzzer—uses the following hash algorithm:

p← ((l ≫ x)⊕ (lprev + z))

lprev ← l ≫ y
(3.1)

Where l is the randomly-generated block identifier (assigned at compile time), lprev is
the identifier of the previously-executed block, x = z = 0, and y = 1. The result p is
used as an index into C. Right-shifting l allows AFL to differentiate between different
orders of two blocks. While performant, this approach is prone to hash collisions,
resulting in miscounted edges and thus reduced precision [2, 67, 127]. Notably, this
problem is not unique to AFL: all fuzzers built on top of AFL [22, 24, 121, 170, 184,
216] or inspired by AFL [8, 37, 163] share the same implementation decision, and thus
share the same loss in precision.

Coarse-grained LTO. CollAFL [67] (and fuzzers based on it; e.g., GREYONE [68],
PathAFL [227]) uses Eq. (3.1) by selecting x, y, and z at link-time so that edges have
unique hashes. Importantly, this approach only ensures the elimination of collisions
for known edges; run-time collisions may still exist.

Fine-grained CFG transformation. Hash collisions can be eliminated by breaking
critical edges in the CFG. Breaking critical edges (i.e., edges whose start/end blocks
have multiple outgoing/incoming edges, respectively) allows block coverage to
precisely imply edge coverage (assuming the number of blocks is fewer then the size
of C) at the cost of increased compile-time complexity. AFL++ [63], honggfuzz [207],
and libFuzzer [188] use LLVM’s SanitizerCoverage (SANCOV) instrumentation [208]
to achieve this.

3.2.3 Path

While edge coverage improves on basic-block coverage by differentiating between
forward and backward edges in a loop, it is unable to reason about the complete
ordering of all blocks in an execution trace. Path coverage resolves this issue by
tracking a complete execution trace—consisting of the sequence of executed blocks—
through the target. However, using this definition of path coverage is infeasible: the
number of paths (which can be infinite) and the memory overhead associated with
maintaining this coverage information is prohibitive [67].
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AFL-Sensitive [214] introduced n-gram coverage (later adopted by AFL++), where
a history of n edges is used to approximate a path. These n edges are xor-ed to-
gether to generate an index into C. In contrast, INSTRIM applies “CFG-aware” in-
strumentation to reduce the number of instrumented blocks (improving run-time
performance) while ensuring different execution paths remain distinguishable [97].
Finally, PTRIX [40] uses Intel Processor Tracing (PT)—a low-overhead execution trac-
ing feature available in modern Intel CPUs—to record program paths while fuzzing.
PTRIX proposes an elastic approach to measure code coverage: encoded PT packets
are concatenated and then hashed to achieve low-overhead path coverage. Like the
coarse-grained probabilistic edge coverage metric, these approaches are lossy and
collisions may occur.

3.2.4 Calling Context

Function call information allows a fuzzer to track context-sensitive coverage infor-
mation (per Section 1.2, this was how Ormandy [162] discovered CVE-2021-43527).
However, efficiently computing accurate calling context is difficult [25, 206]. For
example, each stack frame requires tracking: (i) the current function; (ii) the current
block; (iii) the set of local variables and their values; and (iv) allocated memory. This
is (a) computationally expensive to convert into a single index into C, and (b) memo-
ry-intensive for efficient access (i.e., without walking the stack) [25]. Unsurprisingly,
this leads fuzzers to approximate calling context in practice.

AFL-Sensitive [214], Angora [37], ParmeSan [163], and AFL++ [63] approximate
calling context by maintaining a rolling xor hash of call site identifiers (similar to the
n-gram approach described in Section 3.2.3, but limited to function call/return sites).
AFL++ also supports k-call-site-sensitivity, where the last k call sites are recorded
in the hash. This hash is combined with edge coverage to provide context-sensitive
edge coverage (again, with the possibility of hash collisions). While xor has minimal
overhead, it reduces precision because it does not differentiate between recursive calls
of arbitrary depth. Other approaches (e.g., those proposed by Bond and McKinley
[25] and Sumner et al. [206]) are needed if differentiating between recursive function
calls of arbitrary depth is required.

3.2.5 Memory Access

Memory-safety vulnerabilities remain one of the most common bug classes [147].
Consequently, some fuzzers incorporate memory accesses into their coverage metrics;
inputs that lead to new memory access patterns (that may subsequently lead to
memory-safety errors) are prioritized. This requires encoding memory reads/writes
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in C. When this encoding is code-dependent (e.g., encodes a memory access location
or static address), then collected coverage approximates control flow. However, when
it is data-dependent (e.g., encodes an input-controlled value or address), collected
coverage approximates data flow. Therefore, C may record information about the
location of the memory access (the code location) or the target of the memory address
(the data location). Similarly, the value read from/written to a particular memory
address may (or may not) be included in the coverage metric.

AFL-Sensitive proposes memory-access-aware edge coverage, where both edge cov-
erage and memory reads/writes are combined in the same C (although reads and
writes are distinguished by allocating their hash to different regions of C). MEM-
FUZZ [49] adopts a similar approach, except (a) a lightweight static analysis limits
instrumentation to “interesting memory accesses”, and (b) edge coverage and memory
accesses are disjoint in C (allowing for more fine-grained checks for new program
behaviors). Both AFL-Sensitive and MEMFUZZ are prone to hash collisions in C,
reducing precision. Finally, CollAFL proposes a seed-selection policy that prioritizes
inputs with memory access operations. Unlike the previous approaches, CollAFL
counts memory accesses post hoc: after executing a testcase s, edges covered by s are
retrieved from Cs and the number of memory accesses made per covered block is
determined. This count is combined with Cs to weigh s.

3.2.6 Comparison Operator

Instrumented comparison operators offer a form of lightweight data flow. Both hongg-
fuzz and libFuzzer capture comparisons containing constant operands, feeding these
constants into MutateInput (Algorithm 1). Steelix [123] instruments comparisons to
measure “comparison progress”. Comparison progress—which measures how many
consecutive bytes are matched—is stored with block coverage in C. Similar to MEM-
FUZZ’s memory access instrumentation, Steelix limits its comparison instrumentation
to “interesting” comparisons; one byte and return value comparisons are ignored.

3.2.7 Program Variable

The previously-discussed coverage metrics are primarily control-flow based. While
pervasive, control-flow-based coverage metrics lose important information about
program behavior. For example, greybox fuzzers rely on coverage information to
decide which input mutations lead to new program behaviors. However, the process
for uncovering new behaviors can be highly inefficient, because a fuzzer guided by
control-flow coverage alone cannot identify which mutated input bytes led to new



3.3. Chapter Summary 27

program behavior. Differences in data access and manipulation within a single code
path are lost. Data-flow-based metrics attempt to solve this problem.

INVSCOV [61] augments coarse-grained probabilistic edge coverage with values and
relationships among program variables. However, rather than looking at all program
variables (resulting in state explosion), INVSCOV only considers “likely invariants”:
constraints on the values and relationships of variables learned by dynamically
tracing a seed set. Invariant violations are encoded in C, signaling to the fuzzer (via
IsInteresting) that a new program state has been reached.

DDFuzz [141] also augments coarse-grained probabilistic edge coverage with data
flows between program variables. Here, data flows are derived from the target’s data
dependency graph (DDG). DDGs describe the data flows between instructions in
a program and are traditionally used by optimizing compilers [60]. Like INVSCOV,
DDFuzz only considers a subset of program variables (again, to prevent state explo-
sion): variable definition sites are restricted to load and alloca instructions in the
LLVM intermediate representation (IR), while variable uses are restricted to store

and call instructions. Importantly, the DDG is not used to expand coverage. Instead,
the DDG is used to revisit particular program locations via new paths involving
different variable dependencies (thus exposing program states not visible in the CFG).
Consequently, further filtering is applied to discard data flows subsumed by edge
coverage. Both INVSCOV and DDFuzz use heuristics to decide which program vari-
ables to track. This reduces run-time overhead, but may mean important variables
are missed.

Directed greybox fuzzers (e.g., AFLGo [24]) aim to reach a target location in a code-
base. They typically use a control-flow-based distance metric to determine how close
a given test case is to this location. CAFL [121] extends this idea by incorporating
“data conditions” into the distance metric. Satisfying data conditions requires (a) captur-
ing relevant variables, and (b) computing distances2 between these variables’ values.
IsInteresting uses these distances to determine if the fuzzer is making progress
toward the target location.

3.3 Chapter Summary

In this chapter, we analyzed the coverage metrics used by 79 fuzzers released
from 2013–2022. In doing so, we identified and surveyed three primary metrics (basic
block, edge, and path coverage) and four secondary metrics (calling context, memory
access, comparison operator, and program variable). Among these seven metrics,

2This calculation depends on the comparison operator used in the condition.
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FIGURE 3.2: Qualitative comparison of greybox fuzzers’ coverage
metrics. Precision increases from left to right (along the x-axis) and
bottom to top (along the y-axis). Most fuzzers rely exclusively on
control-flow coverage (along the x-axis). However, these metrics can
be augmented with data-flow-based metrics (along the y-axis). Some
metrics (e.g., edge) vary in implementation, leading to varying levels

of precision.

there exist a wide variety of design and implementation choices (edge coverage alone
has been implemented in several different ways according to precision/performance
tradeoffs).

Inspired by the hierarchy of control- and data-flow coverage metrics proposed by
Horgan, London, and Lyu [94], Fig. 3.2 qualitatively summarizes and compares the
coverage metrics we discussed in this chapter. Blackbox fuzzers appear in the bottom-
left corner: they have no feedback mechanism and hence are the least precise. Most
greybox fuzzers lie on the x-axis, as the majority use some form of edge coverage.
Implementation decisions affect the precision of edge, memory access, and program
variable metrics. Similarly, memory access coverage can be both control- and data-
flow-based depending on implementation tradeoffs. A third axis—coverage of input
structure—could also be included on this graph. This is particularly relevant to
grammar-based fuzzers, where (a) the structure of the input format is known, and
(b) maximizing the generation of syntactic input features will lead to increased
coverage of the target’s state space [83]. However, we omit this axis for readability
and because our focus is on a target’s state space, not its input space.

This chapter sets the scene for the remainder of this dissertation: how do we use
these (sometimes incompatible) opinions about coverage to measure and improve a
fuzzer’s state space exploration. In the next chapter we return to the start of a fuzzing
campaign (① in Fig. 1.1, Chapter 1); how to bootstrap the fuzzer to simplify its state
space search.
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Chapter 4

Seed Selection

Mutational fuzzers require an initial set of non-crashing inputs (a “corpus”) to boot-
strap their state space search. These inputs—or seeds—should exercise different parts
of the target’s state space. By mutating these seeds, the fuzzer aims to reach new, po-
tentially bug-inducing states. In this chapter, we present: (i) an optimal approach for
constructing corpora from a large collection of potential inputs; and (ii) a comparative
evaluation of how corpus selection affects fuzzing outcomes.

4.1 Introduction

“Garbage in, garbage out” is the idea that the quality of input data determines the
quality of outputs. It applies to many fields of computing, including fuzzing. We
argue that fuzzers more efficiently explore a target’s state space when bootstrapped
with “high quality” inputs. What determines the quality of these inputs? We answer
this question here.

Chapter outline. We begin by systematically examining seed selection practices
used in prior work (Section 4.2). Then, we focus on the problem of corpus minimization
(Section 4.3): given a (potentially large) corpus of initial seeds, how to best select a
subset of these seeds (e.g., to remove redundancy) to bootstrap a fuzzer? Here we also
introduce OPTIMIN, our corpus minimization technique. OPTIMIN is unique in that—
unlike other corpus minimization techniques—it produces an optimal minimum corpus.
Finally, we perform a comprehensive empirical evaluation (33 CPU-yr) to understand
how seed choice—including various corpus minimization techniques—affects the
fuzzing process (Section 4.4).
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4.2 Seed Selection Practices

The process for selecting the initial corpus of seeds varies wildly across fuzzer eval-
uations and deployments. We systematically review this variation in the following
sections, first considering experimental evaluations, followed by industrial-scale
deployments.

4.2.1 An Ideal Initial Corpus

Ideally, an initial fuzzing corpus should contain inputs that exercise a diverse set
of states in the target’s state space. A diverse set of states means that a fuzzer’s
mutations is more likely to “nudge” an input into a new, potentially buggy, state. In
contrast, having only a small number of states covered by the initial corpus means
the fuzzer must waste time attempting to reach valid states, rather than focusing on
exploring “corner cases” in the target’s state space.

Seeds in a fuzzer’s initial corpus should also be fast to execute, so that a fuzzer’s
iteration rate is not negatively impacted. Thus, large seeds are discouraged.

Finally, there should be minimal redundancy in the corpus. That is, seeds that cover
the same states should be removed from the corpus. This is analogous to test suite
minimization, where redundant tests should be removed from the test suite to reduce
the time required to run the test suite [86, 98, 126, 220].

4.2.2 In Experimental Evaluation

Remarkably, Klees et al. [115] found “most papers treated the choice of seed casually,
apparently assuming that any seed would work equally well, without providing particulars”.
In particular, of the 32 papers they surveyed (authored between 2012 and 2018):
ten used non-empty seed(s), but it was not clear whether these seeds were valid
inputs; nine assumed the existence of valid seed(s), but did not report how these were
obtained; five used a random sampling of seed(s); four used manually constructed
seed(s); and two used empty seed(s). Additionally, six papers used a combination
of seed selection techniques. Klees et al. [115] conclude “it is clear that a fuzzer’s
performance on the same program can be very different depending on what seed is used” and
recommend “papers should be specific about how seeds are collected”.

We examine an additional 74 papers published since 20181 to see if these recommen-
dations have been adopted. Table 4.1 summarizes our findings.

1Published in top security and software testing venues: ACSAC, ASIA CCS, CCS, EURO S&P, NDSS,
RAID, S&P, SEC, ASE, ESEC/FSE, ICSE, and ISSTA.
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TABLE 4.1: Summary of past fuzzing evaluation, focusing on seed se-
lection. We adopt the categories and notation used by Klees et al. [115]:
R means randomly sampled seeds; M means manually constructed
seeds; G means automatically generated seed; N means non-empty
seed(s) with unknown validity; V means the paper assumes the exis-
tence of valid seed(s), but with unknown provenance; E means empty
seeds; / means different seeds were used in different programs, but
only one kind of seeds in one program; and an empty cell means that
the paper’s evaluation did not mention seed selection. We introduce
an additional category: V* means valid seed(s) with known prove-
nance. We also indicate whether the evaluation is reproducible with

the same seeds.

Year Paper Seed Reproducible

CollAFL [67] ✗

Hawkeye [34] E/V* ✗20
18

QSYM [230] M, V* ✓

AFL-Sensitive [214] E/V* ✓

CEREBRO [122] ✗

Eclipser [46] M/V* ✓

FUZZFACTORY [164] M, V* ✓

GRIMOIRE [16] M ✓

MEMFUZZ [49] E, V ✗

MOPT [134] R ✓

NAUTILUS [8] G, M ✓

NEUZZ [193] G, V* ✓

PFUZZER [142] E ✓

PTRIX [40] V* ✓

REDQUEEN [9] M ✓

Superion [216] R, V ✗

UnTracer [151] V ✓

20
19

Zest [165] V ✓

[19] E ✓

Ankou [137] V* ✓

CRFUZZ [198] ✗

CUPID [78] E/V* ✓

DIE [168] V* ✓

EcoFuzz [229] V* ✓

ENTROPIC [21] E/V* ✓

FuZZan [104] E/V*, R ✓

FuzzGen [103] ✗

FuzzGuard [240] E/V ✗

GREYONE [68] R ✗

IJON [7] M/R/V ✗

Magma [84] V* ✓

MEMLOCK [219] V ✓

MEUZZ [39] V* ✓

MTFuzz [191] G, V* ✗

MUZZ [35] V ✗

PANGOLIN [100] V* ✓

ParmeSan [163] E ✗

PathAFL [227] E/R/V ✗

SAVIOR [41] V* ✓

SYMCC [173] ✗

TortoiseFuzz [217] R ✗

UAFUZZ [156] E/V* ✗

WEIZZ [62] M/V/V* ✗

20
20

ZEROR [237] E/V* ✗

Year Paper Seed Reproducible

[20] V* ✓

AFLCHURN [239] V* ✓

AFL-HIER [213] M/V* ✓

CAFL [121] V* ✗

Controlled Compilation [195] ✗

Gramatron [199] E ✓

HEXCITE [153] ✗

INVSCOV [61] V ✗

LSym [145] V ✗

POLYGLOT [43] V* ✗

SIVO [157] R ✗

SNAP [51] V ✗

SoFi [85] R, V, V* ✗

STOCHFUZZ [236] V/V* ✓

SYMQEMU [174] V* ✓

Token-Level AFL [184] V* ✗

UNIFUZZ [124] R ✓

20
21

ZAFL [152] E, V* ✓

[23] V* ✓

[222] G ✗

[223] V* ✗

BEACON [99] V* ✗

DDFuzz [141] R ✗

EMS [133] R/V ✗

JIGSAW [36] V* ✓

K-Scheduler [190] V* ✓

LTL-Fuzzer [143] R/V* ✓

MobFuzz [232] V* ✗

PATA [125] E/R/V* ✗

20
22

TRUZZ [233] V* ✓
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Unreported seeds. Seven papers make no mention of their seed selection procedure.
One, FuzzGen, explicitly mentions “standardized common seeds” [103] are key to a valid
comparison, yet does not mention the seeds used.

Benchmark and fuzzer-provided seeds. Eight papers (Hawkeye, FUZZFACTORY,
CUPID, ENTROPIC, FuZZan, ZEROR, STOCHFUZZ, and PATA) evaluate fuzzers on
the Fuzzer Test Suite (FTS) [75], which provides seeds for 14 of its 24 targets (com-
mit 6955fc9). Of these seed sets, eight contain only one or two seeds. When no seed
is provided, three papers (CUPID, FuZZan, and PATA) default to the empty seed. It is
unclear what seeds the remaining five papers (Hawkeye, FUZZFACTORY, ENTROPIC,
ZEROR, and STOCHFUZZ) default to. When evaluating on other fuzzer benchmarks—
including FUZZBENCH [144], Magma [84], and LAVA-M [55]—the provided seeds
are used. Finally, seven papers (AFL-Sensitive, PTRIX, EcoFuzz, PANGOLIN, SAVIOR,
Wu et al. [223], and MobFuzz) used the singleton seed sets provided by American
Fuzzy Lop (AFL).

Manually-constructed seeds. Two papers (REDQUEEN and GRIMOIRE) used “an
uninformed, generic seed consisting of different characters from the printable ASCII set” [9].
However, the authors do not justify (a) why this specific singleton corpus was chosen,
and (b) what impact this choice has on the authors’ real-world results, particularly
when fuzzing binutils, where most of the targets accept non-ASCII, binary file for-
mats (e.g., readelf, objdump). Similarly, IJON used “a single uninformative seed contain-
ing only the character ’a’” [7], QSYM used “a dummy ASCII file containing 256 ’A’s” [230],
and Eclipser used “a dummy seed composed of 16 consecutive NULL bytes” [46]. Fi-
nally, AFL-HIER started fuzzing the CGC binaries with a single seed containing the
string “123\n456\n789\n” [213] (rather than the provided seeds).

Random seeds. Thirteen papers (MOPT, Superion, FuZZan, GREYONE, IJON, Path-
AFL, TortoiseFuzz, SoFi, UNIFUZZ, DDFuzz, EMS, LTL-Fuzzer, and PATA) randomly
select seeds from either (a) a larger corpus of seeds provided by developers of a
particular target, or (b) by crawling the Internet. For example, DDFuzz selects a small
subset of seeds “from the test directories. . . in the repositories of the projects” [141]: these
subsets range from three seeds (bison) to 65 seeds (mir, which contains over 900 test
inputs). Which seeds are selected and why is not explained.2 Of these papers, three
(Superion, GREYONE, and SoFi) specifically mention using afl-cmin, AFL’s corpus
minimization tool (discussed further in Section 4.3), to remove duplicate seeds from
the random seed set.

2The authors were happy to share their starting seeds when contacted.
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Empty seeds. Sixteen papers use an empty seed to bootstrap the fuzzing process.
In particular, both Böhme, Manès, and Cha [21] and Böhme and Falk [19] explicitly
removed the corpora provided by OSS-Fuzz (discussed further in Section 4.2.3) and
used the empty seed because they found “initial seed corpora. . . are often for saturation:
feature discovery has effectively stopped shortly after the beginning of the campaign”.

A reproduction experiment: REDQUEEN. To demonstrate the importance of seed
selection, we reproduce an experiment from the REDQUEEN evaluation. Aschermann
et al. [9] fuzz several binutils’ programs, bootstrapping each trial with an “unin-
formed, generic seed” (discussed previously). Their readelf results are particularly
striking: notably, AFLFast and honggfuzz cover little code. We repeat this experiment
but use a variety of initial seeds, including: (i) the original, uninformed seed; (ii) a
single, valid ELF file (from AFL’s seed set); and (iii) a collection of ELF files sourced
from the ALLSTAR [200] and Malpedia [172] datasets (reduced from 104,737 to 366
seeds using afl-cmin). In place of the original REDQUEEN (which we were unable to
build and reproduce) we use AFL++ [63] with “CmpLog” instrumentation enabled;
this reimplements REDQUEEN’s “input-to-state correspondence”.

Our results appear in Fig. 4.1 and clearly show seed choice’s impact on code cov-
erage. Similar to the results of Aschermann et al. [9], AFLFast bootstrapped with
the uninformed seed explores very little of readelf’s code: less than 1 %. However,
this increases to ∼38 % for AFLFast bootstrapped with the valid ELF file, making
it much more competitive against both honggfuzz and AFL++ (although AFL++
still outperforms them both by ∼15 %). Finally, while the afl-cmin corpus has a
negligible impact on AFLFast and honggfuzz, it results in a significant improvement
when fuzzing with AFL++, increasing coverage to ∼60 %.

Requirement

At a minimum, fuzzer evaluations must report the seed set used to bootstrap
the fuzzing process. To ensure reproducibility, artifacts must provide the initial
seed set (since results vary wildly depending on the seeds used). Ideally, fuzzer
evaluations should experiment with different initial seed corpora to see how
varying initial seeds affect fuzzing outcomes.

4.2.3 In Deployment

In addition to being an active research topic, fuzzers are frequently deployed to
find bugs in real-world software [3, 33, 150, 159]. Notably, security professionals
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sets. The mean coverage (using Clang’s source-based region coverage
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also recognize the importance of seed selection. For example, the developers of the
Mozilla Firefox browser remark [149]:

Mutation-based strategies are typically superior to others if the original samples
[i.e., seeds] are of good quality because the originals carry a lot of semantics
that the fuzzer does not have to know about or implement. However, success here
really stands and falls with the quality of the samples. If the originals don’t cover
certain parts of the implementation, then the fuzzer will also have to do more
work to get there.

In contrast to the evaluation practices described in Section 4.2.2, “industrial fuzzing”
eschews small seed sets and the empty seed in favor of large corpora. For example,
seed corpora in Google’s continuous fuzzing service for open-source software, OSS-
Fuzz (commit 0deeef6), ranges in size from a single seed (e.g., OpenThread, ICU) to
62,726 seeds (Suricata). Of the 363 OSSFuzz projects, 135 projects supply an initial
corpus (37 %) for 706 fuzzable targets. The mean corpus size is 1,083 seeds and the
median is 36 seeds. More than half of the 135 projects include more than 100 seeds.

We examined the Suricata corpus in more detail because it provided the largest
number of seeds (62,726). We found large redundancy in these 62,726 seeds: we
reduced the corpus to 31,234 seeds (∼50 % decrease) by discarding seeds with an
identical MD5 hash. We were able to reduce the size of the corpus further (down
to 145 seeds, a 99 % reduction) by again applying afl-cmin (similarly to the readelf

reproduction experiment described in Section 4.2.2). This redundancy is wasteful, as
it leads to seeds clogging the fuzzing queue, which hinders and delays the mutation
of more promising seeds. We discuss corpus minimization in the following section.

Requirement

When deploying fuzzers at an industrial scale, it is imperative that seeds exhibit-
ing redundant behavior be removed from the fuzzing queue, as they will lead to
wasted cycles.

4.3 Corpus Minimization

Orthogonal to the seed selection practices examined in Section 4.2, many popular
fuzzers (e.g., AFL [231], libFuzzer [188], honggfuzz [207]) provide corpus minimization
(sometimes called distillation) tools. Corpus minimization assumes a large corpus of
seeds already exists, and thus a corpus minimization tool reduces this large corpus to
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a subset of seeds that are then used to bootstrap the fuzzing process. How are these
seeds selected?

Abdelnur et al. [1] first formalized this problem as an instance of the minimum set
cover problem (MSCP). The MSCP states that given a set of elements U (the universe)
and a collection of N sets S = s1, s2, . . . , sN whose union equals U, what is the smallest
subset of S whose union still equals U. This smallest subset C ⊆ S is known as the
minimum set cover. Moreover, each si ∈ S may be associated with a weight wi. In this
case, the weighted MSCP (WMSCP) attempts to minimize the total cost of elements
in C.

(W)MSCP is NP-complete [111], so Abdelnur et al. [1] used a greedy algorithm to
solve the unweighted MSCP. Here, U consists of code coverage information for the
set of seeds in the original collection corpus. Subsequently, code coverage (e.g., basic
blocks, edges) continues to be used to characterize seeds in a fuzzing corpus due to
the strong positive correlation between code coverage and bug finding [23, 76, 117].
Computing C is therefore equivalent to finding the minimum set of seeds that still
maintains the code coverage observed in the collection corpus.

Several corpus minimization techniques have been proposed since the work of Ab-
delnur et al. [1]. We discuss prior work in Section 4.3.1, and introduce our own
minimization technique, OPTIMIN, in Section 4.3.2.

4.3.1 Prior Work

Peach Minset. The Peach fuzzer [71] provides a corpus minimization tool, Peach
Minset. Despite its name, Rebert et al. [177] found that Peach Minset does not in fact
calculate C, “nor a proven competitive approximation thereof ”. Peach Minset uses basic
block coverage.

MINSET. Rebert et al. [177] extended the work of Abdelnur et al. [1] by also comput-
ing C weighted by execution time or file size. They designed six corpus minimization
techniques, simulating and empirically evaluating these techniques over several
fuzzing campaigns using the Basic Fuzzing Framework (BFF). These techniques use
basic block coverage. Rebert et al. [177] found that UNWEIGHTED MINSET—an un-
weighted greedy-reduced minimization—performed best in terms of minimization
ability, and that the PEACH SET algorithm (based on the previously-discussed Peach
Minset) found the highest number of bugs. We extend the work of Rebert et al. [177]
in Section 4.4 with an evaluation based on modern coverage-guided greybox fuzzing.
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LibFuzzer. LLVM’s libFuzzer [188] provides a corpus “merge” feature for minimiz-
ing a large corpus “while still preserving the full coverage [of the collection corpus]” [130].
Unlike MINSET and Peach Minset, which use basic block coverage, libFuzzer uses
feature coverage. Here, a feature combines the edge executed and a hit count [19].
This means two seeds si and sj exercising the same edges will have Csi ̸= Csj if one
seed executes an edge more often [21]. LibFuzzer’s merge algorithm is similar to
MINSET: seeds are sorted by size (with smaller seeds preferred) and the number of
covered features (with higher hit counts preferred). Once sorted, seeds are greedily
added to C whenever a new feature is found to be covered.

MoonShine. MoonShine [166] is a corpus minimization tool for operating system
(OS) fuzzers. OS fuzzers typically test the system-call interface between the OS kernel
and user-space applications. As such, the seeds minimized by MoonShine are a list of
system calls gathered from program traces.

SmartSeed. SmartSeed [135] takes a different approach to those previously de-
scribed. Rather than minimizing a corpus of seeds, SmartSeed instead uses a machine
learning model to generate “valuable” seeds, where a seed is considered valuable if it
uncovers new code or produces a crash.

afl-cmin. Due to AFL’s popularity, afl-cmin [231] is perhaps the most widely-used
corpus minimization tool. It implements a greedy minimization algorithm but has a
unique approach to coverage. In particular, afl-cmin reuses AFL’s implementation of
edge coverage to categorize seeds at minimization time, recording an approximation
of edge frequency count, not just whether the edge has been taken. Moreover, afl-cmin
bins edge counts such that changes in edge frequency counts within a single bin are
ignored, while transitions from one bin to another are “flagged as an interesting change
in program control flow” [231]. When minimizing, afl-cmin chooses the smallest seed
in the collection corpus that covers a given edge count and then performs a greedy,
weighted minimization. We consider afl-cmin and MINSET as representatives of the
state-of-the-art in corpus minimization tools and include both in our evaluation.

4.3.2 OPTIMIN

The corpus minimization techniques described in Section 4.3.1 all employ heuristic
algorithms to approximate C. This is because the underlying problem, the (W)MSCP,
is NP-complete. However, in the case of corpus minimization, we found exact
solutions were nonetheless computable in reasonable time. We achieved this by
encoding the problem as a maximum satisfiability (MaxSAT) problem and using
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FIGURE 4.2: An example program and set of traces for illustrating
corpus minimization. The program in Fig. 4.2a is executed with

seeds S1, S2, and S3, producing the traces in Fig. 4.2b .

an off-the-shelf MaxSAT solver. Thus, we implement OPTIMIN, an optimal corpus
minimization tool for AFL.

OPTIMIN3 uses the EvalMaxSat solver [10] to pose and solve corpus minimization
as a MaxSAT problem. Unlike the boolean satisfiability (SAT) problem—which
determines whether the variables in a given Boolean formula can be assigned values
to make the formula evaluate to true—the MaxSAT problem divides constraints into
hard and soft constraints with the aim to satisfy all hard constraints and maximize the
total number (or weighted total) of satisfied soft constraints. OPTIMIN considers edge
coverage as a hard constraint, while seed exclusion is considered a soft constraint.
This approach ensures the solution C covers all edges with the minimal number of
seeds, and is optimal in the sense that C is guaranteed to be exact (rather than an
approximation).

We describe our approach using the example in Fig. 4.2. The program in Fig. 4.2a is
executed with three seeds, producing the traces in Fig. 4.2b . To obtain C, OPTIMIN:

1. Encodes each edge as a disjunction of seeds covering that edge. For example,
the edge (A, B) is encoded as S1 ∨ S2 ∨ S3 because it is covered by all seeds.
Similarly, the edge (B, E) is encoded as S1 ∨ S2 because it is only covered by
seeds S1 and S2. Intuitively, this encoding tells the solver to select S1 or S2 to
ensure the edge (B, E) is represented in C.

2. Produces a conjunction of seed disjunctions. This conjunction is the hard con-
straint (thus assigned the maximum weight ⊤), guaranteeing all edges are
covered in C (i.e., no coverage is “lost” during minimization).

3The “optimal minimizer”. OPTIMIN is available at https://github.com/HexHive/
fuzzing-seed-selection.

https://github.com/HexHive/fuzzing-seed-selection
https://github.com/HexHive/fuzzing-seed-selection
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3. Encodes each seed Si as a soft constraint with a given weight Wi. In a MaxSAT
solver, minimization is performed via negation. Intuitively, this tells the solver
to exclude a seed from C. If the solver must choose between a set of seeds (to
satisfy the hard constraint), then the one with a lower weight is preferred. For
unweighted minimizations (i.e., when only the number of seeds matters, while
their features—such as size—do not), Wi = 1. In the weighted case, Wi is Si’s
file size (leading OPTIMIN to preference smaller seeds).

4. Encodes the hard and soft constraints in weighted conjunctive normal form
(CNF) [12]. These constraints are passed to EvalMaxSat, which produces C.

We present the complete set of constraints for this example in Table 4.2.

OPTIMIN is not the first tool to generate optimal solutions to minimization problems
in software testing. For example, MINTS [98] and Nemo [126] both use integer
linear programming (ILP) solvers to perform test-suite minimization; i.e., eliminate
redundant test cases from a test suite “based on any number of criteria [e.g., statement
coverage, time-to-run, setup effort]” [98]. When developing OPTIMIN, we explored the
use of mixed integer programming solvers (which are more general than ILP solvers),
but found them to be orders-of-magnitude slower than EvalMaxSat.

4.4 Evaluation

We perform a large-scale evaluation (33 CPU-yr of fuzzing) to understand the impact
of seed selection on fuzzing’s ultimate goal: finding bugs in real-world software. We
aim to answer the following research questions:

RQ 1 How effective are corpus minimization tools at producing a minimal corpus?
(Section 4.4.2)

RQ 2 What effect does seed selection have on a fuzzer’s bug finding ability? Do
fuzzers perform better when bootstrapped with (a) a small seed set (e.g., empty
or singleton set), or (b) a large corpus of seeds, derived from an even larger
collection corpus after applying a corpus minimization tool? (Section 4.4.3)

RQ 3 How does seed selection affect state space exploration? Does starting from a
corpus that executes more instrumentation data points result in greater code
coverage, or does a fuzzer’s mutation engine naturally achieve the same cover-
age (e.g., when starting from an empty seed)? (Section 4.4.4)

We find that while corpus minimization greatly impacts fuzzing campaigns, the
underlying minimization tool is less important, as long as some form of minimization
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TABLE 4.2: OPTIMIN constraints for the example in Fig. 4.2. Edges
are encoded as a disjunction of seeds covering that edge. The hard
constraint—a conjunction of seed disjunctions—ensures all edges are
covered in C. Soft constraints—weighted by Wi—minimize the num-

ber of seeds selected.

(A) Weighted minimization (WOPT in Section 4.4.1).

Coverage.

Edges Constraint

(A, B) S1 ∨ S2 ∨ S3
(B, E) S1 ∨ S2
(B, D) S3

(E, F), (F, H), (F, I), (H, J), (I, D), and (J, E) S2
(E, G), and (G, D) S1

Hard constraints.

Constraint Weight

(S1 ∨ S2 ∨ S3) ∧ (S1 ∨ S2) ∧ S3 ∧ S2 ∧ S1 ⊤

Soft constraints.

Constraint Weight

¬S1 W1
¬S2 W2
¬S3 W3

(B) Weighted minimization accounting for edge frequencies (WMOPT in Section 4.4.1). The loop
backedge (J, E) is split into two edges (the number of times the back edge was executed).

Coverage.

Edges Constraint

(A, B) S1 ∨ S2 ∨ S3
(B, E) S1 ∨ S2
(B, D) S3

(E, F), (F, H), (F, I), (H, J), (I, D), (J, E)1, and (J, E)2 S2
(E, G), and (G, D) S1

Hard constraints.

Constraint Weight

(S1 ∨ S2 ∨ S3) ∧ (S1 ∨ S2) ∧ S3 ∧ S2 ∧ S1 ⊤

Soft constraints.

Constraint Weight

¬S1 W1
¬S2 W2
¬S3 W3
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occurs. All experimental data is available at https://datacommons.anu.edu.au/
DataCommons/rest/display/anudc:6106.

4.4.1 Methodology

Fuzzer Selection

Our real-world fuzzing campaigns use AFL (v2.52b) in greybox mode, while our
Magma and FTS campaigns also include AFL++ with (a) CmpLog instrumentation
enabled, and (b) a 250 KiB coverage map. We configure both fuzzers for single-system
parallel execution with one main and one secondary node; the primary node focuses
on deterministic checks, while the secondary node proceeds skips these checks and
proceeds directly to random mutation.

For the FTS and the real-world targets we compile using AFL’s LLVM [120] (v8)
instrumentation for 32-bit x86 and AddressSanitizer (ASAN) [187]. We chose LLVM
instrumentation over AFL’s assembler-based instrumentation because LLVM’s offers
the best level of interoperability with ASAN . We compile Magma targets using their
default build configuration (i.e., 64-bit x64 without ASAN ).

We tune AFL’s timeout and memory parameters for each target to enable effective
fuzzing.4 When fuzzing the FTS we configure the target process to respawn after
every iteration (due to stability issues encountered when fuzzing in parallel execution
mode). All other parameters are left at their default values.

Target Selection

We use targets from the Magma [84] and FTS [75] benchmarks, and six popular open-
source programs (spanning 14 different file formats) to test different seed selection
strategies. Table 4.3 summarizes these targets.

We exclude 14 of the 24 FTS targets, because: (i) they contain only memory leaks (e.g.,
proj4-2017-08-14), which are not detected by AFL by default; or (ii) we were unable
to find a suitably-large collection corpus for a particular file type (e.g., ICC files for
lcms-2017-03-21). Similarly, two Magma targets were excluded (openssl and sqlite3)
because we were unable to find a suitably large corpus, leaving us with five targets.
The six real-world targets are popular programs that are both (a) commonly fuzzed,
and (b) operate on a diverse range of file formats (e.g., images, audio, documents).

4Per-target settings are available at https://datacommons.anu.edu.au/DataCommons/rest/
display/anudc:6106.

https://datacommons.anu.edu.au/DataCommons/rest/display/anudc:6106
https://datacommons.anu.edu.au/DataCommons/rest/display/anudc:6106
https://datacommons.anu.edu.au/DataCommons/rest/display/anudc:6106
https://datacommons.anu.edu.au/DataCommons/rest/display/anudc:6106
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TABLE 4.3: Fuzzing targets. The FTS provides drivers.

Target Driver Command-line Version File type

libpng libpng_read_fuzzer PNG
libtiff tiff_read_rgba_fuzzer TIFF
libxml2 libxml2_xml_reader_for_file_fuzzer XML
php-exif exif JPEG
php-json json JSON
php-parser parser PHP

M
ag

m
a

poppler pdf_fuzzer PDF

freetype2 2017 TTF
guetzli 2017-3-30 JPEG
json 2017-02-12 JSON
libarchive 2017-01-04 GZIP
libjpeg-turbo 07-2017 JPEG
libpng 1.2.56 PNG
libxml2 2.9.2 XML
pcre2 10.00 Regex
re2 2014-12-09 Regex

FT
S

vorbis 2017-12-11 OGG

freetype2 char2svg @@ @ 2.5.3 TTF
librsvg rsvg-convert -o /dev/null @@ 2.40.20 SVG
libtiff tiff2pdf -o /dev/null @@ 4.0.9 TIFF
libxml2 xmllint -o /dev/null @@ 2.9.0 XML
poppler pdftotext @@ /dev/null 0.64.0 PDF
sox-mp3 sox –single-threaded @@ -b 16 -t aiff

/dev/null channels 1 rate 16k fade
3 norm

14.4.2 MP3

R
ea

l-
w

or
ld

sox-wav sox –single-threaded @@ -b 16 -t aiff
/dev/null channels 1 rate 16k fade
3 norm

14.4.2 WAV

Sample Collection

For each file type in Section 4.4.1, we built a Web crawler using Scrapy [241] to
crawl the Internet for 72 h to create the collection corpus. For image files, crawling
started with Google search results and the Wikimedia Commons repository. For
media and document files, crawling started from the Internet Archive and Creative
Commons collections. We used the regular expressions from RegExLib [178], and
sourced OGG files from old video games [112, 148, 161] (in addition to the Internet
Archive). We sourced PHP files from test suites for popular PHP interpreters (e.g.,
Facebook’s HipHop Virtual Machine [58]) and from popular GitHub repositories
(e.g., WordPress [221]). Finally, we found TIFF files to be relatively rare, so we
generated 40 % of the TIFF seeds by converting other image types, such as JPEG and
BMP, using ImageMagick (v6.9.7).

We preprocessed each collection corpus to remove (a) duplicates identified by MD5
checksum, and (b) files larger than 300 KiB. The cutoff file size of 300 KiB is our best
effort to conform to the AFL authors’ suggestions regarding seed size, while still
having enough eligible seeds in the preprocessed corpora. We split audio files larger
than 1 MiB into smaller files using FFmpeg (v3.4.8). In total, we collected 2,899,208
seeds across 14 different file formats. After preprocessing our collection corpus, we
were left with a total of 1,019,688 seeds.
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Experimental Setup

We run the Magma experiments on a cluster of AWS EC2 machines with 36-core
Intel® Xeon® E5-2666 v3 2.9 GHz CPUs and 60 GiB of RAM. We conduct the FTS
and real-world experiments on a Dell PowerEdge server with a 48-core Intel® Xeon®

Gold 5118 2.30 GHz CPU, 512 GiB of RAM, and running Ubuntu 18.04.

Following Section 2.6, we run one fuzzing campaign per {program × fuzzer × initial
corpus} combination (where a program is an executable driver for a particular target).
Each fuzzing campaign consists of thirty independent 18 h trials.

Experiment

We evaluate the following six seed selection strategies against the previously-described
targets and fuzzers:

FULL The collection corpus without minimization, preprocessed to remove dupli-
cates and filtered for size (per Section 4.4.1).

EMPTY A per-target corpus comprising a single “empty” seed. Per Klees et al.
[115], “the empty seed should be considered [when evaluating fuzzers], despite its use
contravening conventional wisdom.” This seed is a zero-length file for six file types
(JSON, MP3, REGEX, TIFF, TTF, and XML). For the remaining eight file types,
the seed is a small file handcrafted to contain the bytes necessary to satisfy
file header checks. This follows from the readelf experiments in Section 4.2.2,
which demonstrates how poorly AFL performs when these header checks are
not satisfied by the initial corpus. These files range in size from 11 B (SVG)
to 13 KiB (OGG), with a median size of 51 B.

PROV The corpus provided with the benchmark (if any). This strategy is only
applicable for the two fuzzer benchmarks (Magma and FTS).

MSET The corpus obtained using the UNWEIGHTED MINSET tool. We present UN-
WEIGHTED MINSET (rather than TIME or SIZE MINSET) because it finds more
bugs than other MINSET configurations [177].

CMIN The corpus produced using AFL’s afl-cmin tool.

WOPT The optimal minimum corpus weighted by file size.

WMOPT The weighted optimal minimum corpus that takes into account edge fre-
quencies. WMOPT attempts to minimize file sizes while maximizing an edge’s
frequency count. We tried to implement an “optimal afl-cmin” (i.e., minimiz-
ing file size while treating the same edge with different hit counts as distinct
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constraints), but EvalMaxSat was unable to find a solution (after 6 h) for many
targets. Maximizing the total hit count for a given edge is a compromise and
one that we hypothesize results in deeper state space exploration.

We exclude REDQUEEN’s uninformed, generic seed due to its poor performance
in Section 4.2.2. We also explored an unweighted optimal minimum corpus, but
found that EvalMaxSat produced the same corpora as WOPT for all but three targets
(Magma’s libpng, the FTS’ libarchive, and the real-world poppler target). Thus, we also
exclude unweighted minimal corpora from our results.

We compare the performance of each seed selection strategy across three measures:

Bug count. The ultimate aim of fuzzing is to find bugs in software. Thus, we use a
direct bug count to answer RQ 2 and compare fuzzer effectiveness. We perform a man-
ual triage of all crashes in the real-world target set. This is in contrast to many prior
works [115, 122, 177, 214], which uses stack-hash deduplication to determine unique
bugs from crashes—a technique known to both over- and under-count bugs [84, 108,
115].

Bug survival. We use survival analysis and the log-rank test as described in Sec-
tion 2.6.2. When computing the restricted mean survival time (RMST) we use N = 30
repeated trials and an upper bound T = 18 h. The log-rank test is computed under
the null hypothesis that two corpora share the same survival function. Thus, we con-
sider two corpora to have statistically-equivalent bug survival times if the log-rank
test’s p-value > 0.05.

Code coverage. Coverage is often used to measure fuzzing effectiveness [23, 115,
144]. Like FUZZBENCH [144], we use Clang’s source-based region coverage metric to
answer RQ 3 and compare coverage across fuzzers using different coverage maps.
This is achieved by replaying each trial’s fuzzing queue through a version of the
target compiled with Clang’s source-based coverage [209].

We report both the mean and 95 % bootstrap confidence interval (CI) of the percentage
of regions executed across each campaign. Per Section 2.6.3, region coverage is
compared across corpora using the Mann-Whitney U-test; a p-value > 0.05 implies
a {program × fuzzer × corpus} combination yields a statistically-equivalent result
compared to another.
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TABLE 4.4: Corpora sizes. Each corpus is summarized by the number
of files contained within (“#”) and total size (“S”, in MiB unless stated
otherwise). The smallest minimized corpus for both “#” and “S” are

highlighted in green and blue, respectively.

FULL PROV MSET CMIN WOPT WMOPT

Target # S # S # S # S # S # S

libpng 66,512 7,773.60 4 1.22 KiB 36 2.69 172 9.61 33 2.01 51 5.37
libtiff 99,955 446.63 21 0.20 35 0.14 115 0.39 33 0.13 55 0.23
libxml2 79,032 205.64 1,268 3.90 42 0.38 132 0.82 42 0.40 56 0.51
php-exif 120,000 222.86 60 0.26 2 0.01 2 0.01 2 0.01 2 0.01
php-json 19,978 76.46 55 4.23 KiB 17 0.72 212 4.29 17 0.85 30 1.91
php-parser 75,777 224.51 2,934 0.92 606 1.94 2,229 11.43 569 1.71 1,187 7.86

M
ag

m
a

poppler 99,986 6,085.07 392 18.39 237 28.11 2,273 119.27 222 26.70 510 66.89

freetype2 466 35.50 2 2.83 KiB 43 5.40 246 20.92 37 5.04 53 6.95
guetzli 120,000 222.86 2 544 B 17 0.04 463 0.60 13 0.03 51 0.10
json 19,978 76.46 1 14 B 17 0.95 149 2.56 16 1.21 27 1.77
libarchive 108,558 850.64 1 500 B 41 1.05 180 2.80 40 0.94 57 1.52
libjpeg-turbo 120,000 222.86 1 413 B 3 0.01 93 0.11 3 0.01 13 0.02
libpng 66,512 7,773.60 1 1.23 KiB 22 1.91 107 4.05 19 1.71 28 2.85
libxml2 79,032 205.64 0 − 97 2.23 440 7.71 89 1.40 175 4.50
pcre2 4,520 0.46 0 − 183 0.04 691 0.13 175 0.03 321 0.09
re2 4,520 0.46 0 − 56 0.01 155 0.01 55 0.01 84 0.01

G
oo

gl
e

FT
S

vorbis 99,450 8,902.70 1 2.54 KiB 8 0.33 237 12.06 8 0.27 20 1.88

freetype2 466 35.50 − − 23 3.04 73 8.68 23 3.02 33 4.70
librsvg 71,763 744.59 − − 173 4.34 881 17.05 159 3.80 333 10.47
libtiff 99,955 446.63 − − 23 0.10 67 0.27 23 0.10 33 0.14
libxml2 79,032 205.64 − − 103 1.67 505 9.04 95 1.60 196 6.70
poppler 99,986 6,085.07 − − 189 22.70 1,318 121.90 177 22.04 381 50.30
sox-mp3 99,691 4,094.22 − − 9 0.17 137 3.75 6 0.30 15 0.64R

ea
l-

w
or

ld

sox-wav 74,000 2,490.61 − − 10 0.39 68 1.65 9 0.27 14 0.49

4.4.2 Minimization (RQ 1)

Table 4.4 shows the sizes of 14 collection corpora minimized across 21 target programs
based on the code coverage measured by AFL. We reapplied the four corpus mini-
mizers when fuzzing Magma with AFL++, as AFL++’s larger coverage map (250 KiB,
compared to AFL’s 64 KiB) theoretically results in a more fine-grained coverage view.
Indeed, we saw small variations (up to 10 %) between the AFL and AFL++ minimized
corpora, due to both the different-sized coverage maps and hash collisions inherent
to AFL’s method for computing edges.

Across both fuzzers, corpora produced by CMIN are significantly larger than that pro-
duced by MSET (mean 8× larger), WOPT (mean 9× larger), and WMOPT (mean 4×
larger). We attribute this to CMIN distinguishing seeds with different edge frequency
counts: MSET and WOPT only look at edges executed, ignoring the number of times
these edges are executed, while WMOPT maximizes an edge’s frequency count. In
comparison, MSET was only at most 37 seeds larger than WOPT (php’s parser), and
on average only five seeds larger than WOPT. WMOPT corpora were (on average)
twice as large as WOPT corpora. Finally, the minimized php’s exif corpora are no-
table because they discard 99 % of the full JPEG corpus, due to a lack of diverse EXIF
data. The small minimized exif corpora demonstrate the importance of selecting a
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diverse range of initial inputs and minimizing large corpora.

In addition to generating smaller corpora, W[M]OPT incur lower run-time costs
during minimization (compared to CMIN). We exclude the time required to trace the
target and collect coverage data for each seed. WOPT’s minimization times range
from 12 ms (freetype2) to 23 min (libjpeg-turbo), with a mean time of 141 s. WMOPT
takes a similar amount of time: between 31 ms (freetype2) and 24 min (php’s exif),
with a mean time of 143 s. In comparison, CMIN’s minimization times range from 12 s
to 130 min, with a mean time of 25 min. Despite CMIN’s significantly slower mini-
mization times, recall that (a) afl-cmin is a BASH script, while we wrote our optimal
solver in C++, and (b) corpus minimization is a one-time upfront cost.

What ultimately matters is if the minimized corpora lead to better fuzzing outcomes.
To this end, the following section discusses the bug-finding ability of the different
corpus minimization techniques across our three benchmark suites (Magma, FTS,
and a set of real-world targets) and two fuzzers (AFL and AFL++). We analyze these
results with respect to the performance measures outlined in Section 4.4.1.

Finding

OPTIMIN produces significantly smaller corpora compared to existing state-of-
the-art corpus minimization tools, while also incurring lower run-time costs.

4.4.3 Bug Finding (RQ 2)

Table 4.5 summarizes the bugs found in our Magma and FTS campaigns. For our real-
world campaigns, we summarize the seven Common Vulnerabilities and Exposures
(CVEs) assigned to us (for bugs found in these campaigns) in Table 4.6. In total, 77
(25 Magma, 15 FTS, and 33 real-world) bugs were found.

FTS Coverage Benchmarks

While is section’s main focus is on the bug-finding ability of each corpus, we first
discuss six FTS “bugs” that are not actual bugs, but are instead code locations that
the fuzzer must reach (marked with † in Table 4.5b). Notably, two of these locations
are reached instantaneously (i.e., seeds in the fuzzing corpora reach the particular
line of code without requiring any fuzzing) by most corpora except EMPTY. Naturally,
EMPTY takes some time to reach the target locations, as AFL must construct valid
inputs from “nothing”. Nevertheless, EMPTY reaches four of the six target locations
within two hours (on average). A libpng location and the freetype2 locations are never
reached by EMPTY, because: (i) freetype2 requires a valid composite glyph, which
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TABLE 4.5: Bug-finding results, presented as the RMST in hours
with 95 % bootstrap CI. Bugs never found have an RMST of ⊤ (to
distinguish bugs with an RMST of 18 h). The best performing corpus
(corpora if the bug survival times are statistically equivalent per the
log-rank test) for each target is highlighted in green (smaller is better).

(A) Magma bugs found by AFL and AFL++. We only report the RMST for bugs triggered. Bugs not
triggered by any corpus are omitted (irrespective of whether the bug was reached or not). The php json

and parser targets are omitted because no bugs were found.

FULL EMPTY PROV MSET CMIN WOPT WMOPT
Target Bug AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

⊤ ⊤ 16.83 ⊤ 16.96 ⊤ 17.95 ⊤ ⊤ ⊤ 17.54 ⊤ 17.47 ⊤PNG001 ± 4.30 ± 3.82 ± 0.33 ± 2.83 ± 3.25
1.93 8.67 ⊤ 0.12 0.0042 0.0050 0.01 0.01 0.02 0.10 0.01 0.04 0.01 0.34PNG003 ± 0.07 ± 3.45 ± 0.05 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.08 ± 0.01 ± 0.01 ± 0.01 ± 0.13
⊤ ⊤ ⊤ 17.96 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PNG006 ± 0.26

17.04 ⊤ ⊤ 17.41 6.85 17.56 11.03 ⊤ 12.26 ⊤ 10.65 ⊤ 10.04 ⊤

libpng

PNG007 ± 3.53 ± 3.61 ± 2.53 ± 2.69 ± 3.46 ± 3.68 ± 3.26 ± 3.54

17.77 ⊤ ⊤ ⊤ ⊤ ⊤ 15.98 ⊤ 15.81 ⊤ 13.93 ⊤ 15.20 ⊤TIF001 ± 0.96 ± 3.23 ± 2.85 ± 3.64 ± 2.55
16.85 16.48 17.65 ⊤ 15.29 17.21 16.39 17.20 12.81 17.46 14.09 16.40 14.50 ⊤TIF002 ± 2.97 ± 4.03 ± 1.17 ± 2.77 ± 2.93 ± 2.73 ± 3.10 ± 2.73 ± 3.27 ± 3.32 ± 4.25 ± 2.84
0.34 7.33 1.27 0.42 0.05 0.05 0.03 0.01 0.03 0.13 0.03 0.01 0.04 0.02TIF007 ± 0.07 ± 4.14 ± 0.66 ± 0.25 ± 0.02 ± 0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01

16.96 ⊤ 17.02 ⊤ 16.23 ⊤ 12.53 13.36 7.91 17.43 8.68 ⊤ 9.39 ⊤TIF008 ± 1.07 ± 2.94 ± 2.81 ± 2.23 ± 3.85 ± 2.24 ± 3.50 ± 2.29 ± 2.18
3.64 12.24 2.45 9.04 0.47 7.65 0.65 7.84 0.53 9.85 0.68 9.33 0.70 9.83TIF012 ± 1.81 ± 3.66 ± 1.24 ± 3.93 ± 0.17 ± 2.79 ± 0.21 ± 3.03 ± 0.12 ± 3.31 ± 0.18 ± 3.04 ± 0.14 ± 3.11
0.76 11.34 1.87 0.73 0.88 6.46 1.38 3.08 1.56 5.16 1.45 2.60 1.66 1.39

libtiff

TIF014 ± 0.15 ± 3.97 ± 1.19 ± 0.55 ± 0.36 ± 3.23 ± 0.78 ± 1.68 ± 0.72 ± 2.31 ± 0.35 ± 1.16 ± 0.51 ± 1.13

17.87 ⊤ ⊤ ⊤ 17.42 ⊤ ⊤ ⊤ 17.25 ⊤ ⊤ ⊤ ⊤ ⊤XML001 ± 0.82 ± 2.49 ± 2.10
8.69 14.94 ⊤ ⊤ 14.93 14.74 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤XML003 ± 2.00 ± 2.89 ± 4.32 ± 3.69
0.69 0.85 0.01 0.02 0.05 0.02 0.77 0.08 0.61 0.15 1.21 0.77 0.63 0.80XML004 ± 0.12 ± 0.08 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.30 ± 0.05 ± 0.29 ± 0.08 ± 0.41 ± 0.26 ± 0.27 ± 0.34

15.99 16.42 17.94 15.00 16.44 17.09 17.55 17.50 15.33 17.07 15.51 16.91 14.31 16.89XML009 ± 3.58 ± 3.26 ± 0.36 ± 2.75 ± 3.64 ± 2.93 ± 1.69 ± 2.19 ± 3.22 ± 2.58 ± 3.55 ± 2.39 ± 3.16 ± 2.01
0.63 1.32 16.88 2.60 0.06 0.38 0.09 0.09 0.11 0.07 0.11 0.07 0.09 0.08

libxml2

XML017 ± 0.12 ± 0.11 ± 2.66 ± 1.22 ± 0.02 ± 0.15 ± 0.01 ± 0.01 ± 0.03 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01

⊤ ⊤ ⊤ ⊤ 0.00 16.20 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PHP004 ± 0.01 ± 5.28
⊤ ⊤ ⊤ ⊤ 0.00 0.00 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PHP009 ± 0.01 ± 0.01

11.79 7.76 8.68 0.05 0.00 13.74 9.66 0.05 7.40 0.06 8.43 0.06 9.76 0.05

php-exif

PHP011 ± 2.09 ± 3.78 ± 2.32 ± 0.01 ± 0.01 ± 2.40 ± 2.67 ± 0.01 ± 2.16 ± 0.01 ± 1.97 ± 0.02 ± 2.77 ± 0.01

⊤ ⊤ ⊤ ⊤ 17.43 ⊤ 17.86 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF002 ± 3.45 ± 0.82
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.46 ⊤ 17.18 ⊤ 16.93 ⊤ 15.40 ⊤PDF005 ± 3.28 ± 3.01 ± 2.92 ± 3.38
⊤ ⊤ ⊤ ⊤ 0.83 7.66 4.06 17.42 5.54 17.65 4.51 ⊤ 8.07 ⊤PDF010 ± 0.64 ± 4.15 ± 0.74 ± 3.54 ± 0.62 ± 1.13 ± 0.48 ± 1.49
⊤ ⊤ 0.0042 0.0066 0.08 0.09 0.14 2.19 1.11 3.13 0.14 2.48 0.30 2.51PDF016 ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.14 ± 0.04 ± 0.17 ± 0.01 ± 0.17 ± 0.01 ± 0.16
⊤ ⊤ ⊤ ⊤ 6.17 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF018 ± 2.62
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.61 ⊤ 17.67 ⊤ ⊤ ⊤ ⊤ ⊤PDF021 ± 2.37 ± 2.00
⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 17.79 ⊤ ⊤ ⊤ 17.90 ⊤ ⊤ ⊤

poppler

PDF022 ± 0.57 ± 0.48
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(B) Bug-finding results (cont.). FTS bugs found by AFL and AFL++. IDs are derived from the order in
which the bugs are presented in the target’s README (from the FTS repo). Bugs marked with † denote
benchmarks that attempt to verify the fuzzer can reach a known location. Results with “−” indicate
the FTS does not contain seeds for that target (see Table 4.4), and so we ignore it. The vorbis target is

omitted because none of its three bugs were found.
FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target Bug AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

0.00 0.00 ⊤ ⊤ 6.78 6.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
freetype2 A†

± 0.00 ± 0.00 ± 2.12 ± 2.73 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00

⊤ ⊤ ⊤ ⊤ 10.25 17.48 15.88 17.45 17.78 ⊤ 15.45 ⊤ 16.92 ⊤
guetzli A ± 2.33 ± 1.38 ± 2.09 ± 3.37 ± 1.07 ± 2.82 ± 2.83

⊤ ⊤ ⊤ 16.41 0.09 0.28 17.64 ⊤ 16.93 17.57 17.68 ⊤ 17.90 ⊤
json A ± 4.24 ± 0.08 ± 0.27 ± 2.17 ± 3.92 ± 2.60 ± 1.43 ± 0.62

⊤ ⊤ ⊤ 15.31 ⊤ 9.08 4.44 11.86 9.39 11.97 12.50 6.78 7.38 13.50
libarchive A ± 1.76 ± 0.90 ± 0.21 ± 1.74 ± 1.42 ± 1.90 ± 0.50 ± 0.44 ± 0.05 ± 1.75

17.19 ⊤ 1.92 10.43 3.00 14.14 3.36 16.57 3.82 15.62 4.71 16.91 3.68 15.70libjpeg-
turbo A†

± 2.37 ± 0.45 ± 2.73 ± 0.95 ± 2.47 ± 0.98 ± 2.70 ± 1.19 ± 2.75 ± 1.52 ± 2.70 ± 0.93 ± 2.11

2.41 0.0043 0.03 0.11 0.08 0.21 0.0051 0.09 0.0072 0.0041 0.0025 0.0049 0.0038 0.08
A†

± 0.01 ± 0.002,0 ± 0.01 ± 0.02 ± 0.08 ± 0.03 ± 0.002,9 ± 0.01 ± 0.003,6 ± 0.002,7 ± 0.001,7 ± 0.003,2 ± 0.002,5 ± 0.01
0.00 0.00 ⊤ 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B†
± 0.00 ± 0.00 ± 0.04 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00

2.42 0.0089 0.0003 0.07 0.0008 2.47 0.0046 0.0049 0.0070 0.0054 0.0023 0.0062 0.0036 0.0040

libpng

C†
± 0.02 ± 0.009,2 ± 0.000,4 ± 0.14 ± 0.000,7 ± 0.85 ± 0.002,9 ± 0.002,5 ± 0.003,5 ± 0.003,3 ± 0.001,7 ± 0.003,4 ± 0.002,2 ± 0.003,2

4.46 17.84 ⊤ 16.46 − − 0.54 3.10 0.79 4.72 0.66 4.70 0.85 7.81A ± 0.32 ± 0.58 ± 2.48 ± 0.06 ± 0.09 ± 0.12 ± 0.96 ± 0.07 ± 0.51 ± 0.23 ± 2.23
16.46 ⊤ 5.32 13.43 − − 13.35 ⊤ 10.57 17.85 8.93 17.95 14.46 ⊤B ± 1.27 ± 1.22 ± 2.26 ± 1.95 ± 2.20 ± 0.91 ± 1.81 ± 0.28 ± 2.09
⊤ ⊤ ⊤ ⊤ − − ⊤ ⊤ 17.53 ⊤ ⊤ ⊤ ⊤ ⊤

libxml2

C ± 2.89

2.57 4.56 1.88 2.70 − − 2.15 5.43 2.07 3.10 1.59 4.83 1.39 3.34A ± 0.39 ± 0.36 ± 0.25 ± 0.44 ± 0.24 ± 0.74 ± 0.23 ± 0.46 ± 0.16 ± 0.47 ± 0.18 ± 0.44
2.04 5.34 3.25 5.71 − − 2.01 3.83 2.29 3.98 1.42 3.47 1.61 3.39pcre2

B ± 0.73 ± 1.58 ± 0.70 ± 0.88 ± 0.68 ± 0.73 ± 0.65 ± 1.36 ± 0.42 ± 0.96 ± 0.72 ± 1.22

0.82 2.91 1.72 9.72 − − 0.74 3.30 0.52 3.85 0.50 7.52 0.42 3.35
A†

± 0.16 ± 0.52 ± 0.31 ± 1.61 ± 0.52 ± 0.53 ± 0.12 ± 0.70 ± 0.16 ± 2.88 ± 0.09 ± 1.14
16.20 16.41 17.66 17.69 − − 11.52 15.69 11.85 16.97 12.19 17.08 12.36 15.91re2

B ± 3.83 ± 2.49 ± 1.48 ± 1.87 ± 2.70 ± 2.53 ± 3.22 ± 2.35 ± 3.07 ± 2.62 ± 3.18 ± 2.55

TABLE 4.6: Real-world targets assigned a CVE.

Target CVE Description

libtiff 2019-14973 Elision of integer overflow check by compiler

poppler 2019-12293 Heap buffer overread

2019-8354 Integer overflow causes improper heap allocation
2019-8355 Integer overflow causes improper heap allocation
2019-8356 Stack buffer bounds violation
2019-8357 Integer overflow causes failed memory allocation

sox

2019-13590 Integer overflow causes failed memory allocation
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EMPTY never synthesizes in the given timeframe, and (ii) libpng requires a specific
chunk type (sRGB), which is difficult to synthesize without any knowledge of the
PNG file format.

The only coverage benchmark that is not reached within minutes, libjpeg-turbo, is
reliably reached by all corpora except FULL within the first five hours (on average)
of each trial. The FULL corpus is highly unreliable on this target: it only reaches the
target location in 10 % of trials, and when it does, it takes double the time of the other
corpora. This results in a high survival time of 17.19 h.

The EMPTY Seed

Of the 41 (14 Magma, 8 FTS, and 19 real-world) bugs EMPTY was able to find, it
was the (equal) fastest to do so for 21 of these (5 Magma, 3 FTS, and 13 real-world).
This result is particularly striking on sox (both MP3 and WAV), where EMPTY found
the most bugs with the lowest RMSTs (including three of the CVEs in Table 4.6).
However, EMPTY also suffers from the highest “false negative” rate: it is the most
likely corpus to miss a bug when one exists (as evident from the number of ⊤ entries
in Table 4.5; the most of any corpus).

We hypothesize this low RMST is due to the reduced search space when mutating the
empty seed, but that the mutation engine is less likely to “get lucky” in generating
a bug-inducing input when starting from nothing. Indeed, for the three FTS bugs
where EMPTY statistically outperforms the other corpora (libjpeg-turbo, libpng’s bug C,
and libxml2’s bug B), EMPTY finds the bug with the lowest number of mutations (on
average, half the number of mutations compared to the other corpora on these three
bugs) while also achieving a comparable (and sometimes slightly slower) iteration
rate than the other corpora (in particular, WOPT achieves a higher iteration rate than
EMPTY on these three targets).

PROVided Seeds

The FTS PROV seeds—half of which are singleton seeds—are selected (by the FTS
developers) based on their ability to trigger the target bug(s) within a few hours.
For example, the FTS json bug is “usually found in about 5 minutes using the provided
seed” [75] (confirmed by our results). While serving as a useful regression test (i.e.,
ensuring a new fuzzer does not perform worse than an existing one), this is not
indicative of typical fuzzing practices, as (a) the location of bugs is unknown a priori,
and (b) large seed sets are used in practice (per Section 4.2.3). Given the former,
it is notable that the minimized corpora (CMIN, MSET, WOPT, and WMOPT) also
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successfully found the same FTS bugs found by PROV, and even outperform the
PROV corpus in half of these targets (freetype2, libarchive, and libpng).

The PROV corpus is the best performer at finding bugs in Magma: it triggers the
most bugs—21 of the 25 bugs found by all fuzzers—and achieves the (equal) lowest
RMSTfor 15 of these bugs. Similarly to FTS’s freetype2 and libpng, all three php exif

bugs were found without any mutation of the PROV seeds. Closer inspection of this
corpus reveals why: PROV contains images that serve as regression tests for each
of these three bugs (bug77753.tiff, bug77563.jpg, bug77950.jpg, corresponding to
bugs PHP004, PHP009, and PHP011, respectively). These regression tests immediately
trigger their respective bugs, but with Magma’s ideal sanitization—“in which triggering
a bug immediately results in a crash” [84]—disabled by default, these seeds do not cause
a crash and hence are not excluded by AFL.5

Iteration Rates

Low iteration rates coupled with large corpora have a detrimental effect on a fuzzer’s
ability to find bugs. For example, with FULL, guetzli achieves mean iteration rates
of 0.84 and 0.74 execs/s for AFL and AFL++, respectively. At the other end of the
spectrum, EMPTY achieves mean iteration rates of 229.23 and 167 execs/s (for AFL
and AFL++, respectively), while the minimized corpora achieve iteration rates be-
tween 2 and 5 execs/s. FULL’s low iteration rate has a severe impact: both AFL and
AFL++ fail to complete an initial pass over the 120,000 seeds in this corpus (in an 18 h
trial), let alone perform any mutations and discover the bug. In comparison, the
guetzli bug is found by all minimized corpora (CMIN, MSET, WOPT, and WMOPT)
and PROV. We encounter similar results with poppler, where again neither AFL nor
AFL++ complete a full pass over the collection corpus (resulting in no bugs triggered).

We find iteration rates vary significantly between fuzzers. For example, fuzzing
Magma’s libpng with AFL and EMPTY achieves a mean iteration rate of 693 execs/s,
while AFL++ achieves a mean iteration rate of 2,508 execs/s. Conversely, fuzzing
the same target with AFL and WOPT achieves a mean iteration rate of 4,575 execs/s,
compared to AFL++ at 351 execs/s. These results correlate with the bug survival
times in Table 4.5a (where AFL++ outperforms AFL on the EMPTY seed, while
AFL outperforms AFL++ with the WOPT corpus), suggesting higher iteration rates
contribute to a fuzzer’s bug-finding ability (and at the very least, allow a fuzzer to
more-quickly discard inputs that are not worth exploring).

5At the time of writing, this is a known issue flagged by the Magma developers, per https://github.
com/HexHive/magma/issues/54.

https://github.com/HexHive/magma/issues/54
https://github.com/HexHive/magma/issues/54
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When fuzzing with non-empty corpora, AFL achieves a higher iteration rate than
AFL++. This is likely due to a combination of (a) more complex target instrumentation
(where more of this instrumentation is being exercised with valid inputs), and (b) a
coverage map ∼4× larger than AFL’s (which has L2 cache implications). These
results further reinforce the need for corpus minimization when starting with a large
collection corpus, particularly as fuzzer complexity increases.

Comparison to Previous Magma Evaluations

Our results improve on those originally presented by Hazimeh, Herrera, and Payer
[84]. Nine of the bugs triggered during our 18 h trials (PNG006, TIF001, XML001,
XML003, PDF002, PDF005, PDF018, PDF021, and PDF022) were never triggered by
AFL/AFL++ in the original 24 h campaigns. Furthermore, two of these bugs (pop-
pler’s PDF005 and PDF022) were never found by any of the seven fuzzers originally
evaluated by Hazimeh, Herrera, and Payer [84]. These two bugs were only found
by the distilled corpora fuzzed with AFL and never with FULL, EMPTY, PROV, or
AFL++. This is significant because over 200,000 CPU-hr were spent fuzzing Magma
targets (across many 24 h and 7 d trials).

CVEs

Our real-world fuzzing campaigns led to the assignment of seven CVEs across three
targets, summarized in Table 4.6 (our campaigns uncovered another 26 bugs, but
these were already under investigation). Of these bugs, libtiff ’s CVE-2019-14973 is
particularly interesting: discovered by all corpora, but found the fastest and most
reliably by EMPTY (with an RMST of 6.02 h), this bug is only evident because we
build our real-world targets for 32-bit x86. The libtiff maintainers report that the
undefined behavior at the root of this bug does not manifest on 64-bit targets.

Our campaigns also reproduced an uncontrolled resource consumption bug in libtiff
(CVE-2018-5784). This bug is caused by an infinite loop in the TIFF image directory
linked list and is again found most frequently by EMPTY (11 out of 30 trials, resulting
in an RMST of 12.37 h). In comparison, this bug is never found by FULL and MSET
and only once by the other corpora. Notably, the initial EMPTY seed does not contain
any image file directories, while all of the TIFF files in our minimized corpora do.
We suspect AFL’s mutations break existing directory structures (leading to parser
failures), whereas EMPTY can construct a (malformed) directory list from scratch.
These mutations eventually lead to a loop in the list, causing uncontrolled resource
consumption.
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Finding

Seed selection significantly impacts a fuzzer’s ability to find bugs. Both AFL and
AFL++ perform better when bootstrapped with a minimized corpus, although
the exact minimization tool is inconsequential. While both AFL and AFL++ find
a similar number of bugs, AFL is generally faster to do so (and with less variance
in bug-finding times).

4.4.4 Code Coverage (RQ 3)

Table 4.7 summarizes the coverage achieved overall Magma and FTS campaigns. For
most targets, EMPTY explores less code than the other corpora: on average, half as
much code (although this difference slightly decreases when fuzzing with AFL++). In
particular, on targets accepting highly-structured input formats (e.g., libxml2, poppler),
EMPTY explores less than half as much of the program’s code compared to the four
minimized corpora. EMPTY’s results slightly improve when fuzzing with AFL++,
likely due to the additional CmpLog instrumentation (reflecting our readelf results
in Section 4.2.2). However, despite this improvement, EMPTY’s performance remains
inferior to any other seed selection strategies.

After an 18 h trial, little distinguishes the code coverage achieved by the non-EMPTY
corpora, and once again the four minimized corpora with AFL produced the best
results. Curiously, the coverage gains AFL++ saw when fuzzing readelf with CMIN
(Section 4.2.2) did not manifest in any of the five Magma targets: both AFL and AFL++
achieved similar levels of code coverage.

Finding

Seed selection has a significant impact on a fuzzer’s ability to expand code
coverage. When fuzzing with the empty seed, more advanced fuzzers (such
as AFL++) can cover more code. However, this advantage all but disappears
when bootstrapping the fuzzer with a minimized corpus, as faster iteration rates
become more critical. The exact minimization tool remains inconsequential.

4.4.5 Discussion

Selecting a corpus minimization tool. We evaluated three corpus minimization
tools: MINSET, afl-cmin, and our OPTIMIN. Our results do not reveal a “best”
minimization tool; while minimized corpora sizes varied markedly between tools,
stochastic fuzzing variability means this ultimately has no statistically significant
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TABLE 4.7: Code coverage, expressed as the mean region coverage
(as a percentage of total program regions) with 95 % bootstrap CI. The
best performing corpus (corpora if the code coverages are statistically
equivalent per the Mann-Whitney U-test) for each target is highlighted

in green (larger is better).

(A) Magma code coverage with AFL and AFL++.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

28.71 25.56 15.26 19.10 25.19 26.55 30.00 29.53 29.98 29.60 30.03 29.39 29.08 28.81
libpng ± 0.09 ± 1.51 ± 0.06 ± 0.97 ± 0.29 ± 0.74 ± 0.05 ± 0.06 ± 0.05 ± 0.06 ± 0.04 ± 0.12 ± 0.05 ± 0.14

44.37 44.76 35.10 27.41 44.77 41.72 45.40 44.45 46.09 44.38 45.70 44.38 45.86 43.90
libtiff ± 0.39 ± 0.30 ± 2.23 ± 2.05 ± 0.25 ± 0.43 ± 0.23 ± 0.22 ± 0.23 ± 0.39 ± 0.26 ± 0.26 ± 0.29 ± 0.32

21.10 20.39 10.60 14.99 22.47 22.74 19.47 19.84 20.75 20.64 19.53 19.14 20.06 19.07
libxml2 ± 0.29 ± 0.31 ± 0.29 ± 0.44 ± 0.22 ± 0.37 ± 0.14 ± 0.20 ± 0.21 ± 0.32 ± 0.22 ± 0.10 ± 0.14 ± 0.07

2.24 2.34 2.28 2.36 2.37 2.37 2.25 2.36 2.30 2.36 2.29 2.36 2.26 2.36
php-exif ± 0.04 ± 0.01 ± 0.04 ± 0.00 ± 0.00 ± 0.00 ± 0.04 ± 0.00 ± 0.03 ± 0.00 ± 0.03 ± 0.00 ± 0.04 ± 0.00

35.96 35.95 1.49 1.76 41.12 38.35 41.40 36.74 41.13 37.92 41.30 36.69 41.44 36.85
poppler ± 0.00 ± 0.00 ± 0.00 ± 0.01 ± 0.05 ± 0.06 ± 0.06 ± 0.30 ± 0.06 ± 0.32 ± 0.07 ± 0.27 ± 0.07 ± 0.33

(B) FTS code coverage with AFL and AFL++.

FULL EMPTY PROV MSET CMIN WOPT WMOPT

Target AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++ AFL AFL++

48.01 44.65 17.31 33.85 34.99 45.41 47.58 44.84 47.84 44.11 47.82 43.24 47.73 45.12
freetype2 ± 0.12 ± 0.41 ± 0.16 ± 0.78 ± 0.17 ± 0.59 ± 0.14 ± 0.34 ± 0.15 ± 0.42 ± 0.20 ± 0.24 ± 0.16 ± 0.21

67.34 67.34 31.05 30.31 75.55 73.61 72.95 69.84 73.12 70.76 72.93 70.16 72.79 69.92
guetzli ± 0.00 ± 0.00 ± 0.14 ± 0.14 ± 0.12 ± 0.08 ± 0.14 ± 0.10 ± 0.11 ± 0.07 ± 0.10 ± 0.07 ± 0.11 ± 0.08

90.29 90.87 90.00 90.18 90.32 90.74 90.60 90.96 90.62 91.14 90.82 90.96 90.79 91.05
json ± 0.08 ± 0.11 ± 0.34 ± 0.31 ± 0.26 ± 0.22 ± 0.06 ± 0.06 ± 0.07 ± 0.08 ± 0.10 ± 0.07 ± 0.08 ± 0.06

17.14 16.67 17.84 23.09 18.04 24.63 18.51 20.14 18.54 22.18 18.65 21.55 18.36 21.61
libarchive ± 0.12 ± 0.47 ± 0.46 ± 0.77 ± 0.63 ± 0.68 ± 0.19 ± 0.39 ± 0.22 ± 0.24 ± 0.10 ± 0.21 ± 0.20 ± 0.27

16.31 15.38 18.56 18.01 18.84 18.13 20.53 19.24 20.54 19.50 20.47 19.25 20.41 19.01
libjeg-turbo ± 0.30 ± 0.08 ± 0.09 ± 0.07 ± 0.24 ± 0.07 ± 0.11 ± 0.32 ± 0.11 ± 0.24 ± 0.12 ± 0.30 ± 0.11 ± 0.38

32.81 34.87 19.30 29.66 25.40 33.83 34.92 36.62 35.09 36.82 34.97 36.95 34.94 36.63
libpng ± 0.12 ± 0.10 ± 0.00 ± 0.23 ± 0.00 ± 0.21 ± 0.09 ± 0.18 ± 0.06 ± 0.13 ± 0.06 ± 0.15 ± 0.07 ± 0.12

14.90 14.49 6.77 8.12 − − 15.81 15.08 15.91 14.95 16.01 15.06 15.76 15.29
libxml2 ± 0.09 ± 0.03 ± 0.09 ± 0.49 ± 0.15 ± 0.12 ± 0.13 ± 0.03 ± 0.02 ± 0.15 ± 0.15 ± 0.18

60.81 63.97 59.65 63.13 − − 60.94 63.21 61.04 63.64 61.09 63.03 61.00 62.92
pcre2 ± 0.16 ± 0.14 ± 0.15 ± 0.20 ± 0.16 ± 0.22 ± 0.22 ± 0.24 ± 0.23 ± 0.16 ± 0.16 ± 0.22

59.00 58.96 59.26 58.13 − − 59.05 59.03 59.08 59.00 59.10 57.40 59.05 59.00
re2 ± 0.07 ± 0.06 ± 0.16 ± 0.53 ± 0.06 ± 0.05 ± 0.04 ± 0.06 ± 0.05 ± 0.83 ± 0.08 ± 0.07
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impact on fuzzing outcomes (with respect to both bug finding and code coverage).
However, a minimized corpus is always better due to the faster iteration rate. While
our results show that this may not necessarily find more bugs in a given trial, the
fuzzer can more quickly discard inputs not worth exploring. We, therefore, recom-
mend the adoption of OPTIMIN, given the considerably smaller corpora it produces.

When to use the empty seed. While our results demonstrate that corpus minimiza-
tion achieves the best results, there were nine occasions (three in each of the Magma,
FTS, and real-world benchmarks) where EMPTY performed as well as or better than
the minimized corpora. These occasions correspond to when coverage is at its lowest,
suggesting these are shallow bugs. Thus, we recommend an additional campaign
with the empty seed to quickly weed out shallow bugs where possible.

Corpus minimization as lossy compression. Prior work [183, 214] shows how
different coverage metrics can affect fuzzing results in practice. Similarly, corpus
minimization can also use coverage metrics not solely based on code coverage (or
approximate edge coverage in AFL’s case). Corpus minimization based solely on
code coverage is effectively a form of lossy compression [59]: program states may be
discarded if they do not expand code coverage. Indeed, we saw this in Section 4.4.2,
where the AFL/AFL++ corpus sizes differed due to different-sized coverage maps.
We leave it to future work to explore how corpus minimization generalizes to other
coverage metrics.

Generalizing to other fuzzers. We limit our experiments to two coverage-guided,
mutational greybox fuzzers: AFL and AFL++. We selected AFL because it is widely
evaluated and deployed, while AFL++ is an updated and maintained version of
AFL incorporating broad improvements from recent fuzzing research and regularly
outperforms all other fuzzers on Google’s FUZZBENCH [144]. While it is unclear how
our results might generalize to other fuzzers (e.g., honggfuzz [207] and libFuzzer [188],
both of which provide corpus minimization capabilities), we believe our AFL++
results—which demonstrate how seed selection practices impact a range of recent
advances in fuzzing research—are generalizable to other mutation-based greybox
fuzzers. We leave it to future work to confirm this.

4.5 Chapter Summary

In this chapter we presented, to the best of our knowledge, the first in-depth analysis
of the impact seed selection has on mutation-based coverage-guided greybox fuzzing.
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We argue that the choice of fuzzing corpus is a critical decision—often overlooked—
made before a fuzzing campaign begins. Our results provide ample confirmation of
this criticality. In particular, we demonstrate how fuzzing outcomes vary significantly
depending on the initial seeds used to bootstrap the fuzzer; especially with respect to
state space exploration.

Now that the fuzzer is bootstrapped with an appropriate seed corpus, we turn our
attention to running the fuzzer and the instrumented target (② and ③ in Fig. 1.1,
Chapter 1). In particular, in the next chapter we introduce a new coverage metric:
def -use chains.
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Chapter 5

Data-Flow-Guided Fuzzing

In Chapter 3 we surveyed the coverage metrics fuzzers use to abstract a target’s state
space and measure state space search. We found that most fuzzers use coverage
metrics derived from control-flow features (e.g., basic block, edge). However, in some
targets, control flow offers only a coarse-grained approximation of program behavior;
instead, data flow provides a more fine-grained view.

5.1 Introduction

Exploiting dynamic information drives fuzzer efficiency. Tracking code executed in a
target allows a fuzzer to focus its mutations on inputs that reach new code. However,
per Section 1.2, tracking code coverage (i.e., control-flow coverage) only covers one
dimension of a program’s state space. Is this sufficient? We answer this question here.

Chapter outline. We begin by motivating the need for data-flow-guided fuzzers
(Section 5.2). Then, we introduce our approach for tracking run-time data flows with
low overhead: the DATAFLOW fuzzer (Section 5.3). Inspired by AFL-Sensitive [214],
DATAFLOW provides a tunable sensitivity range, balancing the computational cost of
exploration with precision. We discuss this in Section 5.3.1, followed by a discussion
of DATAFLOW’s implementation in Section 5.4. Finally, we evaluate DATAFLOW in
Section 5.5. This evaluation compares DATAFLOW to state-of-the-art fuzzers driven
by control flow, taint analysis, and data flow.

5.2 Motivation

In some targets, control flow offers only a coarse-grained approximation of program
behavior. This includes targets whose control structure is decoupled from its se-
mantics (e.g., LR parsers generated by yacc [224]). Such targets require data-flow
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coverage [65, 88, 101, 175, 202, 224] to accurately capture program behavior. Whereas
control flow focuses on the order of operations in a program (i.e., branch and loop
structures), data flow instead focuses on how variables (i.e., data) are defined and
used [175]; indeed, there may be no control dependence between variable definition
and use sites.

5.3 Design of a Data-Flow-Guided Fuzzer

A greybox fuzzer should maintain accurate coverage information without negatively
impacting performance. These requirements exist irrespective of the coverage metric
used. With this in mind, we describe: (i) a theoretical foundation for constructing
data-flow-based coverage metrics; (ii) how DATAFLOW incorporates these observa-
tions; and (iii) the implementation of a DATAFLOW prototype.

5.3.1 Coverage Sensitivity

We define data-flow coverage as follows:

Definition
Data-flow coverage is the tracking of def -use chains executed at run time.

This definition allows us to explore data-flow-based coverage metrics with different
sensitivities [183, 214]. We follow the program analysis literature and define sensitivity
as a coverage metric’s ability to discriminate between a set of program behaviors [114].
In fuzzing, a coverage metric’s sensitivity is its ability to preserve a chain of mutated
test cases until they trigger a bug [214]. Different sensitivities allow us to balance
efficacy and performance: more sensitive metrics incur higher performance penalties.
For example, edge coverage sensitivity is increased by incorporating function call
context [37]. However, this requires additional instrumentation, increasing run-time
overhead [183].

Like traditional data-flow analysis, our data-flow coverage metric requires identifying
variable def and use sites. Following Horgan and London [93], we define a data-flow
variable def site as a name referring to storage allocated statically (e.g., storage
class static, global) or automatically (i.e., local to a procedure). We deviate from
this definition by: (i) including calls to dynamic memory allocation routines (e.g.,
malloc); and (ii) excluding reallocations/reassignments that would traditionally kill
a definition. Instead, def s are only killed when they (a) go out of scope (e.g., a local
variable in a returning procedure), or (b) are explicitly deallocated (e.g., via free).
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All types
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(A ) Def site sensitivity lattice. Variables are parti-
tioned based on their type.

access +
value
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offset
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(B ) Use site sensitivity lattice. Variables are
partitioned based on their access (e.g., read,
write) and what information about the access

is recorded (e.g., offset, value).

FIGURE 5.1: Def and use site sensitivity lattices. The sensitivity of
coverage metrics increases towards the bottom.

Consequently, a use site includes both reads/writes from/to a def site. We deviate
from the classic definition to ensure scalability: the difficulties of scaling data-flow
analyses on real-world programs are well known [29, 88, 202]. We believe reducing
precision by not killing definitions (when assigning a new value to a variable) is a
suitable trade-off to maintain scalability.

Once we identify def and use sites, DATAFLOW instruments these sites (using compiler-
based instrumentation, discussed in Section 5.4) so def -use chains can be tracked at
run time. However, exactly which def -use sites are instrumented (and hence which
are tracked) depends on the required sensitivity. Inspired by Wang et al. [214], this
leads us to define a pair of sensitivity lattices—one for def sites and another for use
sites, in Fig. 5.1—that can be composed to achieve the desired overall sensitivity (we
discuss related limitations in Section 5.4.4). The remainder of this section reuses the
code from Fig. 1.2a , which we reproduce in Fig. 5.2 for convenience.

Def Site Sensitivity

Complete data-flow coverage requires identifying and instrumenting all variable def
sites. Unfortunately, the overhead to achieve this level of sensitivity is prohibitively
expensive [28]. Therefore, a method for identifying (and hence instrumenting) a
subset of important program variables is required. Ideally, this would be an (almost
entirely) automated process, reducing the developer burden on the user.
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1 static char buf [128];
2

3 void foo(int a, size_t b) { memset(buf , a, b); }
4 void bar(int a, size_t b) { foo(’A’, sizeof(buf)); }
5 void baz(int a, size_t b) { bar(a, sizeof(buf)); }
6

7 const struct handler_t {
8 char code;
9 void (* handler)(int , size_t);

10 } handlers [] = {{0x66 , foo}, {0x61 , bar}, {0x7a , baz }};
11

12 int sig_cmp(void *data , size_t start , size_t len) {
13 if (start + 3 > len)
14 return 1;
15

16 static const char sig[3] = {0xa , 0xb, 0xc};
17 return memcmp (&data[start], sig , 3);
18 }
19

20 int main(int argc , char *argv []) {
21 struct stat st;
22

23 int fd = open(argv[1], O_RDONLY);
24 fstat(fd , &st);
25 size_t size = st.st_size;
26 char *data = malloc(size);
27 read(fd, data , size);
28

29 if (sig_cmp(data , 0, size))
30 return 1;
31

32 for (unsigned i = 4; (i + 3) <= size; i += 3)
33 for (unsigned j = 0; j < 3; ++j)
34 if (data[i] == handlers[j].code)
35 handlers[j]. handler(data[i + 1], data[i + 2]);
36

37 free(data);
38 close(fd);
39

40 return 0;
41 }

FIGURE 5.2: Source code for the simple dispatch table from Fig. 1.2a .
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One approach is to partition def sites by type and restrict instrumentation to def sites of
a given type (or type set). Figure 5.1a shows the sensitivity lattice for this type-based
partitioning.

Partitioning def sites by type has several advantages. For example, instrumenting ar-
ray variables focuses the fuzzer on memory-safety vulnerabilities. Similarly, tracking
the data flow of structs may allow for the discovery of type confusion vulnerabili-
ties [105, 197]. Type-based partitioning requires some upfront knowledge of the target
to ensure meaningful variables are tracked at run time. For example, the fuzzer may
miss important program behaviors (and hence bugs) if “uninteresting” variables are
tracked (e.g., st at line 21 in Fig. 5.2).

Requirement

Tracking all data flows is prohibitively expensive. Identification (and instrumen-
tation) of only important variables is required.

Use Site Sensitivity

Figure 5.1b shows the use site sensitivity lattice. Variables are either read from or
written to (i.e., “accessed”). Variable accesses are strictly more sensitive than writes
or reads on their own. The simplest and least sensitive metrics only track when a
variable is accessed (shown at the top of the lattice).

Conversely, the most sensitive data-flow coverage metrics are ones that track not only
when a particular variable is accessed, but the value of that variable when accessed. For
example, considering line 17 in Fig. 5.2, this is the difference between reading from
data and reading the value 0xa from data. The latter is akin to traditional data-flow
testing, which focuses on the values that variables take at run time [175, 202], and is
similar to GREYONE, which monitors (a subset of) program variables and their values
to infer taint [68]. Depending on the def site sensitivity, this approach will quickly
saturate the fuzzer’s coverage map (due to the path collision problem [67]); a middle
ground between this overly sensitive approach and simple accesses is required.

We achieve this middle ground by incorporating more fine-grained spatial informa-
tion into a variable’s use. This is particularly useful when def sites include arrays
and/or structs (e.g., handlers in Fig. 5.2), as def -use chains are now differentiated by
the offset at which an array/struct is accessed (analogous to a field-sensitive static
analysis).
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Requirement

Information at different granularities is recorded at use sites. Care is required
when recording more precise information to ensure the coverage map does not
saturate, clogging the fuzzing queue.

Composing Sensitivity Lattices

Different def -use sensitivities can be composed to track data flow at different granu-
larities. We reuse the code in Fig. 1.2a —reproducing it in Fig. 5.2 for convenience—to
illustrate this. For example, given the def sensitivity lattice in Fig. 5.1a , the following
may be tracked: (i) all variables; (ii) integer variables (e.g., fd, i); (iii) arrays (e.g.,
handlers); or (iv) each struct in handlers. To simplify our presentation, we restrict
def site instrumentation (and hence def -use chain tracking) to the handlers array. This
leads to varying def -use chains depending on the use site sensitivity.

Simple access. The green region in Fig. 5.1b . Tracks when handlers is accessed
(lines 34 and 35 in Fig. 5.2). This results in two def -use chains: line 10 ; line 34, and
line 10 ; line 35. However, this provides a poor approximation of program behavior:
information about the specific handler executed is lost.

Access with offset. The blue region in Fig. 5.1b . Tracks when handlers is accessed
along with the offsets where handlers is accessed (at index j). This provides a more
complete view of how handlers is used with negligible overhead. This is similar to
MEMFUZZ’s approach, which incorporates memory accesses into code coverage [49].
This results in 2× 3 def -use chains: one for each read at each index j.

Access with value. The red region in Fig. 5.1b . Tracks when handlers is accessed
along with the values (being read) during these accesses. This is the most sensitive use
site coverage metric and achieves the goal of traditional data-flow coverage: associate
values with variables, and how these associations can affect the execution of the
target [175]. This is similar to GREYONE’s “taint inference”, which looks at the value
of variables used in path constraints [68].

Again, this level of sensitivity results in six def -use chains. Here, handlers’ value
range is fully deterministic. However, in general these values will depend on user
input, resulting in rapid saturation of the fuzzer’s coverage map.
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FIGURE 5.3: High-level overview of DATAFLOW.

Requirement

Sensitivity lattice composition must balance efficacy and performance: too
precise, and the fuzzer’s coverage map will saturate, reducing throughput.

By composing def and use sensitivity lattices, we realize a variety of data-flow-based
coverage metrics. We do this in our fuzzer, DATAFLOW, described in the following
sections.

5.4 DATAFLOW Implementation

Figure 5.3 depicts DATAFLOW’s high-level architecture, including: (i) compiler instru-
mentation (built on LLVM v12) for capturing def -use sites at the desired sensitivity
(Sections 5.4.1 and 5.4.2); and (ii) a runtime library for feeding data-flow information
to the fuzzing engine (Section 5.4.3).

Our architecture is agnostic to the underlying fuzzer; the instrumented target pro-
duced by the compiler (and linked with the fuzzalloc runtime library) can be ex-
ecuted by any American Fuzzy Lop (AFL)-based fuzzer (i.e., any fuzzer using an
AFL-style coverage map). However, instead of recording and tracking control-flow
coverage, the fuzzer’s coverage map tracks data-flow coverage. DATAFLOW is
available at https://github.com/HexHive/datAFLow.

5.4.1 Def -use Site Identification

We must first identify def and use sites so that data flows between these sites can
be tracked. Per Section 5.3.1, def site selection impacts coverage sensitivity: more
instrumented def sites leads to more complete data-flow coverage. We implement sev-
eral def site instrumentation schemes based on the type-based partitioning described
in Section 5.3.1.

We make the following assumptions during def -use site identification. First, we as-
sume debug metadata is available in the LLVM intermediate representation (IR).

https://github.com/HexHive/datAFLow
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We use this metadata to identify and limit variable def sites to source-level vari-
ables. Second, we assume tracked variables are accessed via memory references (i.e.,
load/store instructions), rather than registers. This is automatic for most compos-
ite types (e.g., arrays). For primitive types (e.g., integers), this requires demoting
registers to memory references (via LLVM’s reg2mem pass).

The first assumption reduces the number of potential data flows and is adopted
from prior work [61, 141]. The second assumption limits use sites to memory access
instructions, simplifying instrumentation. We apply existing LLVM transforms to
limit use sites to two instructions: loads and stores.1 Exactly which instructions we
instrument depends on the use sensitivity required (configured at compile time). We
describe our instrumentation in Section 5.4.2.

5.4.2 Def -use Tracking

We reduce the run-time tracking of def -use chains to a metadata management problem.
Here, def site identifiers are the metadata requiring efficient retrieval at use sites.
Inspired by AFL’s approach for tracking edge coverage—where basic blocks (in the
LLVM IR) are statically assigned a random 16-bit integer—we statically “tag” def sites
(again, in the LLVM IR) with a random 16-bit integer (Section 5.4.2). This tag is then
propagated to use sites, where it is retrieved and used to construct a def -use chain
(Section 5.4.3).

Def Site Instrumentation

We adopt Padding Area MetaData (PAMD) [128] for tracking def -use chains. PAMD
extends baggy bounds checking, a technique proposed by Ding et al. [50] for protect-
ing C and C++ code against buffer overruns. PAMD attaches inline metadata to
memory objects (hence our assumption that tracked variables are accessed via mem-
ory references; Section 5.4.1) and provides constant-time lookup of this metadata.
This lookup occurs via the “baggy bounds table”, which stores the binary logarithm
of an object’s size and alignment (denoted e). Once e is retrieved from the baggy
bounds table, the base and size of an object pointed to by p is computed using:

base = p &∼(2e − 1) (5.1)

size = 2e (5.2)

Equations (5.1) and (5.2) require an object’s size and alignment to be a power-of-two.
To meet this requirement, PAMD pads static objects (i.e., stack and global variables)

1We lower atomic memory intrinsics and expand llvm.mem* intrinsics so we can focus on load/store
instructions (both of which are trivial to identify and hence instrument).



5.4. DATAFLOW Implementation 65
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FIGURE 5.4: PAMD’s approach for inline metadata. “Object” is aligned
to a power-of-two boundary and “padding” is inserted to ensure size

is a power-of-two.

before attaching the def site tag. Figure 5.4 illustrates this process. For example, given
a 4-byte object, then size = 8, e = 3 (the binary logarithm of size), and two bytes of
padding is inserted before the tag.

Objects whose padding or overall size becomes too large for static allocation are
“heapified” (i.e., move to the heap). We adopt CCured’s [154] approach to heapify
objects. For heap-allocated objects (including heapified objects), calls to malloc,
calloc, and realloc are replaced with tagged versions (e.g., __bb_malloc) accept-
ing the 16-bit tag as an additional argument. Figure 5.5 demonstrates our def site
instrumentation on a static global variable.

Figure 5.5 shows a snippet of the (un)instrumented LLVM IR for the simple dispatch
table in Fig. 1.2 (Chapter 1). We focus our def site instrumentation on the global
handlers array. During compilation, DATAFLOW resizes handlers to meet PAMD’s
object size requirement. Here, 14 B of padding are inserted before the two-byte tag
(line 8 in Fig. 5.5b ). DATAFLOW then tags this def site with the identifier 1337 (line 9).
Handlers is a global variable, so registration in the baggy bounds table occurs via a
constructor (line 13) inserted by the compiler.

Use Site Instrumentation

Per Section 5.4.1, use sites are limited to load and store instructions in the LLVM
IR (e.g., line 12 in Fig. 5.6a ). We instrument these instructions with a call to
__hash_def_use, which retrieves the object’s size from the baggy bounds table and
uses this size to retrieve the def tag. The size is also used to determine the offset at
which an object is accessed (enabling the access with offset sensitivity described in
Section 5.3.1). Like def sites, use sites are tagged at compile time with a randomly-
generated identifier (e.g., 4242 at line 12 in Fig. 5.6b ). Finally, we leverage several
techniques from AddressSanitizer (ASAN) [187] to limit the number of use instrumen-
tation sites, thereby reducing overhead without sacrificing precision. We describe the
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1 ; const struct handler_t handlers [] =
2 ; {{’f’, foo}, {’a’, bar}, {’z’, {baz }}}
3 @handlers = [3 x %struct.handler_t] [
4 %struct.handler_t {i8 102, void (i32 , i64)* @foo},
5 %struct.handler_t {i8 97, void (i32 , i64)* @bar},
6 %struct.handler_t {i8 122, void (i32 , i64)* @baz}
7 ], align 16

(A ) Original code.

1 ; Assign handlers the tag "1337"
2 @handlers = <{ [3 x %struct.handler_t], [14 x i8], i16 }> <{
3 [3 x %struct.handler_t] [
4 %struct.handler_t {i8 102, void (i32 , i64)* @foo},
5 %struct.handler_t {i8 97, void (i32 , i64)* @bar},
6 %struct.handler_t {i8 122, void (i32 , i64)* @baz}
7 ], ; The original array
8 [14 x i8] zeroinitializer , ; Padding
9 i16 1337 ; Tag

10 }>, align 64
11

12 ; Register the allocation in the baggy bounds table
13 define void @fuzzalloc.ctor () {
14 entry:
15 %cast = bitcast @handlers to i8*
16 call void @__bb_register(i8* %cast , i64 64)
17 ret void
18 }

(B ) Instrumented code.

FIGURE 5.5: Example def site instrumentation of the simple dispatch
table in Fig. 1.2a . DATAFLOW replaces the handlers global array
with a tagged version (tag = 1337) and registers this allocation in the

baggy bounds table (in the fuzzalloc.ctor).



5.4. DATAFLOW Implementation 67

1 ; data[i] == handlers[j].code
2

3 ; Load data[i]
4 %data_idx = getelementptr inbounds i8*, i8* @data , i64 %i
5 %0 = load i8 , i8* %data_idx
6

7 ; Load handlers[j].code
8 %handlers_idx = getelementptr inbounds [3 x %struct.handler_t],
9 [3 x %struct.handler_t ]* @handlers , i64 0, i64 %j

10 %code = getelementptr inbounds %struct.handler_t ,
11 %struct.handler_t* %handlers_idx , i32 0, i32 0
12 %1 = load i8 , i8* %code
13

14 ; Check equality
15 %cmp =icmp i8 %0, %1

(A ) Original code.

1 ; Instrument handlers ’ use with a call to __hash_def_use
2

3 %data_idx = getelementptr inbounds i8*, i8* @data , i64 %i
4 %0 = load i8 , i8* %data_idx
5

6 ; Load handlers[j].code and instrument use
7 %handlers_idx = getelementptr inbounds [3 x %struct.handler_t],
8 [3 x %struct.handler_t ]* @handlers , i64 0, i64 %j
9 %code = getelementptr inbounds %struct.handler_t ,

10 %struct.handler_t* %handlers_idx , i32 0, i32 0
11 %1 = load i8 , i8* %code
12 call void @__hash_def_use(i16 4242i8* %code , i64 1)
13

14 %cmp =icmp i8 %0, %1

(B ) Instrumented code.

FIGURE 5.6: Example use site instrumentation of the simple dispatch
table in Fig. 1.2a . DATAFLOW tags (tag = 4242) and instruments the

use site with a call to __hash_def_use.
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internals of __hash_def_use, and how it integrates with the fuzzer, in the following
section.

5.4.3 Fuzzer Integration

The __hash_def_use function constructs a def -use chain by hashing together the def
and use sites. This hash is used as a lookup into the fuzzer’s coverage map to guide
the fuzzer toward discovering new data flows. This is analogous to AFL tracing
edges to discover new control flow paths. Consequently, we leverage techniques used
by traditional greybox fuzzers (e.g., compact bitmaps) to efficiently record data-flow
coverage [138].

In particular, we use coarse data-flow coverage metrics—def -use chain hit counts
stored in a compact bitmap—to achieve efficient fuzzing. While these techniques
result in path collisions [67], we are willing to tolerate such imprecision to limit
overhead costs. Coarse coverage metrics also lower implementation costs, enabling
the reuse of existing fuzzing engines (here, AFL++ [63]).

We adopt AFL’s hashing process (Eq. (3.1) in Section 3.2.2) for looking up data flows
in the fuzzer’s coverage map. What is hashed and how it is hashed varies according to
the desired sensitivity (Section 5.3.1):

Simple access. Xor of the def and use site tags:

p← def⊕ use (5.3)

Access with offset. The def site tag, use site tag, and the offset being accessed. The offset
(e.g., array index, struct offset) is computed by subtracting the base address—found
using Eq. (5.1)—from pointer p. We compute the hash as:

p← def⊕ (use + offset) (5.4)

Access with value. The def site tag, use site tag, the offset, and the value accessed. The
def /use tags and offset are left-shifted to allow room for the value hash and reduce
collisions. The accessed value is divided into single-byte chunks {v0, v1, . . .} that are
hashed into the def -use chain:

p← (def⊕ (use + offset)≪ 2)⊕ (v0 ⊕ v1 ⊕ . . .) (5.5)

This is implemented as a loop, resulting in a double-load of the accessed object
(in addition to the load in the original code). We implement the __hash_def_use
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function so that uninstrumented data flows (i.e., those without an entry in the baggy
bounds table) are bucketed in their own coverage map entry.

5.4.4 Limitations

Def Site Selection

Our def site selection approach (Section 5.3.1) is incomplete: important data flows
may be missed if the appropriate def sites are not instrumented. Per our def site
sensitivity lattice, our prototype focuses on composite types (i.e., arrays and structs)
and eschews instrumenting primitive types (e.g., integers). While this approach may
miss important data flows, we accept this trade-off, given (a) memory safety remains
a key concern [147], and (b) the prohibitive run-time overheads when tracking all def
sites.

Custom Memory Allocators

Identifying def sites is complicated because many applications do not directly call the
standard allocation routines (e.g., malloc), but indirectly through a custom memory
allocator. For example, standard memory allocation routines may be wrapped in other
functions. These functions may then be indirectly called via global variables/aliases,
stored and passed around in structs, or used as function arguments.

To address the challenge imposed by custom memory allocators and memory allo-
cation patterns, DATAFLOW allows the user to specify wrapper functions to tag (in
addition to the standard allocation routines). While DATAFLOW requires the user to
find these wrappers manually, existing techniques [38] could assist in this process.
We wrap these memory allocation routines within trampoline functions when their
address is taken (e.g., stored in a global variable). Rather than a compile-time def
site tag (which may not be statically computable), these trampolines revert to using
the lower 16-bits of the PC as the def site tag. This approach avoids the need for
expensive and imprecise static analysis (e.g., to track the access of memory allocators
through global variables).

C++ Dynamic Memory Allocation

To simplify our instrumentation, we rewrite C++ new calls as malloc calls. However,
this prevents us from handling any std::bad_alloc exceptions, meaning any failed
allocations will cause a program crash (irrespective of any exception handlers in
place). Such false negatives are removed by replaying crashing inputs through the
original target.
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Coverage Imprecision

Storing coarse coverage information in a compact bitmap is inherently inaccurate and
incomplete [67]. While this may limit DATAFLOW’s ability to discover and explore
data flows, this limitation is not unique to DATAFLOW, and affects many greybox
fuzzers [7, 8, 37, 49, 61, 68, 97, 134, 141, 214, 217, 231].

5.5 Evaluation

We perform an extensive evaluation (over 3 CPU-yr of fuzzing) to answer the follow-
ing research questions:

RQ 1 Is data-flow-guided fuzzing viable with minimal run-time overheads? (Sec-
tion 5.5.2)

RQ 2 Does data-flow-guided fuzzing find more or different bugs? (Section 5.5.3)

RQ 3 Does data-flow-guided fuzzing expand more coverage? (Section 5.5.4)

RQ 4 Can we predict a priori the targets most amenable to data-flow-guided fuzzing?
(Section 5.5.5)

5.5.1 Methodology

Fuzzer Selection

Our evaluation compares the performance of fuzzers using: (i) pure control-flow
coverage; (ii) pure data-flow coverage; and (iii) exact and approximate dynamic taint
analysis (DTA), combining control-flow coverage with data-flow tracking.

We select AFL++ (commit 3e2986d) as the pure control-flow-guided fuzzer because
it is the current state-of-the-art coverage-guided greybox fuzzer. We configure
AFL++ with: (i) link-time optimization (LTO) instrumentation, eliminating hash
collisions; and (ii) with and without “CmpLog” instrumentation. CmpLog—inspired
by REDQUEEN’s input-to-state correspondence [9]—approximates DTA by capturing
comparison operands. Similarly, we select Angora as an alternative control-flow-
guided fuzzer (using context-sensitive edge coverage) that also incorporates exact
DTA. Finally, we select DDFuzz as an alternative data-flow-guided fuzzer.2

We configure DATAFLOW with: (i) two def site sensitivities: arrays only (“A”) and
arrays + structs (“A+S”); and (ii) three use site sensitivities: simple access (“A”),
accessed offset (“O”), and accessed value (“V”). We use the notation “X/Y to refer to

2DDFuzz was published concurrently with DATAFLOW.



5.5. Evaluation 71

TABLE 5.1: Evaluated fuzzer configurations. Angora and DDFuzz
use their default map sizes. AFL++’s LTO instrumentation does not

require a fixed-size map.

Name Map size (KiB) Description

ALTO − AFL++ with LTO instrumentation
ACL − AFL++ with LTO and CmpLog instrumentation
An 1,024 Angora
DD 64 DDFuzz
DA/A 1,024 DATAFLOW with array def s with accessed uses
DA/A+O 1,024 DATAFLOW with array def s with accessed offset uses
DA/A+V 1,024 DATAFLOW with array def s with accessed value uses
DA+S/A 1,024 DATAFLOW with array & struct def s with accessed uses
DA+S/A+O 1,024 DATAFLOW with array & struct def s with accessed offset uses
DA+S/A+V 1,024 DATAFLOW with array & struct def s with accessed value uses

the composition of X def and Y use site sensitivities; e.g., “A/A” refers to array def
and access use sites; “A+S/O” refers to arrays + structs def and accessed offset use
sites. The evaluated fuzzers are summarized in Table 5.1.

Target Selection

We evaluate the ten fuzzers in Table 5.1 on the following targets. We fuzz 20 target
programs in total.

SPEC CPU2006. The SPEC CPU benchmark suite [89] is an industry-standardized,
CPU-intensive benchmark suite for stress-testing a system’s processor, memory sub-
system, and compiler. We use SPEC CPU2006 to answer RQ 1.

Magma. Unlike other fuzzing benchmarks (e.g., UNIFUZZ [124]), Magma [84]
contains ground-truth bug knowledge. We exclude the php target because it failed to
build with AFL++’s CmpLog instrumentation (failing with a segmentation fault). We
use 15 Magma targets to answer RQ 2.

DDFuzz target dataset. Mantovani, Fioraldi, and Balzarotti [141] select five targets—
bison, pcre2, mir, qbe, and faust—they believe to contain a large number of data
dependencies, and hence are amenable to data-flow-guided fuzzing. We use newer
versions of these targets (because some did not compile on Ubuntu 20.04), shown in
Table 5.2. We use these targets to answer RQ 3.

Experimental Setup

We conduct all experiments on an Ubuntu 20.04 AWS EC2 instance with a 48-core
Intel® Xeon® Platinum 8275CL 3.0 GHz CPU and 92 GiB of RAM. Each fuzz run
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TABLE 5.2: DDFuzz target dataset.

Target Driver Command line Commit

bison bison @@ -o /dev/null 5555f4d
pcre2 pcre2test @@ /dev/null db53e40
mir c2m @@ 852b1f2
qbe qbe @@ c8cd282
faust faust @@ 13def69

was conducted for 24 h and repeated five times (ensuring statistically sound results).
All targets were bootstrapped with their provided seeds.3 Finally, we (a) manually
located and specified memory allocation functions for DATAFLOW to tag, and (b) used
Angora’s default behavior to discard taint when calling an external library.

5.5.2 Run-time Overheads (RQ 1)

Conventional wisdom assumes data-flow-based coverage metrics are too heavy-
weight, adversely affecting a fuzzer’s performance by reducing its iteration rate. We
investigate the extent to which this assumption is true by isolating the effects of
instrumentation overhead outside of a fuzzing environment. Per Section 5.5.1, we
measure performance overheads on SPEC CPU2006.

Table 5.3 shows the overhead of all ten evaluated fuzzers on all 19 C and C++ tar-
gets in the SPEC CPU2006 v1.0 benchmark suite. We compare these measurements
against a baseline without instrumentation (clang v12), calculating the geometric
mean (“geomean”) and 95 % bootstrap confidence interval (CI) over three repeated
iterations. The following results are omitted because they failed to build or run:
AFL++ (LTO) 445.gobmk triggered a run-time assertion; DATAFLOW (all configura-
tions) 429.mcf crashed with a run-time segmentation fault; and Angora 447.dealII,
471.omentpp, 473.astar, and 483.xalancbmk failed to link with DFSAN’s runtime library.

Angora has a geomean overhead of 32.79×. This is particularly notable because pre-
vious work has found DFSAN—the framework upon which Angora’s taint tracking
mode is built—to be one of the more performant DTA frameworks [192]. However,
while this overhead is significantly higher than AFL++ (LTO) and AFL++ (CmpLog)—
which have geomean overheads of 1.19× and 2.80×, respectively—it is important
to recall Angora amortizes this cost over the lifetime of a fuzzing campaign by only
tracking taint once on a given input over many mutations.

Of the six DATAFLOW configurations, A/A has the lowest overhead (10.69×), while
A + S/V has the highest (15.01×). This is unsurprising, given the rolling hash

3We contacted Mantovani, Fioraldi, and Balzarotti [141] to obtain their initial seed sets.
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TABLE 5.3: SPEC CPU2006 overheads. Computed as the geomean
(over three repeated iterations) relative to an uninstrumented bench-
mark (compiled with clang v12). The 95 % bootstrap CI is reported
for the geomean across all targets (for a given fuzzer). The bootstrap
CI is zero for individual targets and hence is omitted. A ✗ indicates

the target failed to compile or run.

Fuzzer (×)
Target ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

400.perlbench 1.27 3.86 141.85 21.81 12.04 12.75 16.34 12.51 13.21 16.79
401.bzip2 1.26 2.17 25.83 2.54 7.75 8.53 11.12 7.69 8.49 11.09
403.gcc 1.30 3.40 21.19 3.45 19.53 21.22 26.07 19.58 21.18 26.20
429.mcf 1.12 2.46 12.08 1.52 ✗ ✗ ✗ ✗ ✗ ✗

445.gobmk ✗ 2.48 23.41 5.26 6.99 7.51 9.48 6.92 7.44 9.73
456.hmmer 1.12 3.08 60.41 1.56 13.47 15.07 21.61 13.60 14.95 21.62
458.sjeng 1.21 4.36 29.69 4.44 7.57 8.13 10.05 7.54 8.01 10.32
462.libquantum 1.20 2.40 27.09 1.61 3.81 4.04 6.97 3.70 4.14 6.97
464.h264ref 1.19 1.82 41.01 1.88 100.63 109.40 134.10 100.96 109.68 134.58
471.omnetpp 1.06 2.02 ✗ 2.05 6.58 6.34 6.82 6.15 6.34 7.56
473.astar 1.13 2.19 ✗ 1.59 5.53 5.83 6.80 5.60 5.96 7.28
483.xalancbmk 1.29 5.04 ✗ 3.48 11.44 12.25 15.67 11.66 12.43 15.93

1.19 2.80 32.79 2.91 10.69 11.41 14.64 10.65 11.47 15.01Geomean ± 0.00 ± 0.01 ± 0.34 ± 0.03 ± 0.13 ± 0.18 ± 0.22 ± 0.16 ± 0.21 ± 0.21

approach used for the “access with value” use sensitivity (Section 5.4.3). Performance
improvements are possible by specializing the hash function based on the type of
value accessed (e.g., hashing a uint64_t or float value directly, rather than dividing
it into single-byte chunks). Increasing the def site sensitivity to include structs added
minimal overhead. However, this is target specific: the median number of tracked
arrays (across the 12 SPEC CPU2006 targets) is 51, compared to 33 structs. This result
may not generalize across targets where structs outnumber arrays.

Our results reflect those presented by Liu and Criswell [128] (e.g., 464.h264ref has
the highest run-time overhead in both the original and our work). However, there
is a significant increase in our run-time overheads compared to the original PAMD
implementation [128]. To validate our PAMD (re)implementation we evaluated a ver-
sion of DATAFLOW that only performed metadata lookup in the baggy bounds table
(i.e., it did not construct def -use chains nor update the fuzzer’s coverage map). This
version of DATAFLOW has a geomean overhead of 3.97×. Def -use chain construction
is a simple xor operation (Section 5.4.3), so we attribute this dramatic increase in
run-time overhead to the interaction of the baggy bounds table and coverage map. In
particular, cache effects associated with reading from/writing to these two tables.
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Finding

Despite building on PAMD—an efficient metadata encoding scheme—DATAFLOW

remains impaired by high run-time overheads. Maximizing fuzzer iteration
rates (e.g., by lowering run-time instrumentation costs) is crucial to maximizing
fuzzing outcomes.

5.5.3 Bug Finding (RQ 2)

Following Sections 2.6.2 and 4.4.3, we again use survival analysis to summarize our
bug-finding results. When computing the restricted mean survival time (RMST) we
use N = 5 repeated trials and an upper bound T = 24 h. The log-rank test is again
used to compute the statistical significance of our bug-finding results; two fuzzers
have statistically-equivalent bug survival times if the log-rank test’s p-value > 0.05.

We present our bug-finding results in Table 5.4. Based on raw bug counts, AFL++
was the best performing fuzzer, triggering 60 bugs. The two data-flow-driven fuzzers
followed this; DDFuzz (44 bugs) and DATAFLOW (41 bugs). Angora was the worst-
performing fuzzer, triggering only 24 bugs.

DATAFLOW with “simple access” use sensitivity (DFA/A and DFA+S/A) was the best-
performing version of DATAFLOW (39 bugs). This was followed by DFA+S/O (31
bugs). DATAFLOW was “accessed value” use sensitivity was the worst performer.
This suggests incorporating variable values at use sites is not worth the increased
run-time cost; simply tracking the existence of def -use chains is “good enough” (for
discovering bugs).

AFL++ remains the best-performing fuzzer when accounting for RMSTs (i.e., it trig-
gers bugs fastest), outperforming the data-flow-guided fuzzers for the majority of
bugs triggered (60 %). However, this result is reversed (i.e., the data-flow-guided
fuzzers outperform AFL++) for 14 % of the triggered bugs. Notably, DATAFLOW was
the only fuzzer to trigger LUA003 (not previously triggered by any fuzzer in any
prior Magma evaluation), while DATAFLOW and DDFuzz triggered XML001 (xmllint)
and LUA004 orders-of-magnitude faster than AFL++. DDFuzz was the only fuzzer
to trigger PDF008. However, this bug was only triggered once (over five trials) and
towards the end of the trial (after 20 h). This suggests that the bug is difficult to find
and DDFuzz may have just “got lucky”. Finally, AFL++ either failed to trigger or was
orders-of-magnitude slower at triggering SSL009 (x509) and PDF003 (pdfimages).
Do these bugs share properties that make them amenable to discovery via data-flow-guided
fuzzing? To answer this question, we examine the two lua bugs in greater depth.
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TABLE 5.4: Magma bugs, presented as the RMST (in hours) with 95 %
bootstrap CI. Bugs never found by a particular fuzzer have an RMST
of ⊤ (to distinguish bugs with a 24 h RMST). We only report the RMST
for bugs triggered; bugs not triggered by any fuzzer are omitted.
The best performing fuzzer (fuzzers if the bug survival times are
statistically equivalent per the log-rank test) for each bug is highlighted

in green (smaller is better).

Fuzzer
Target Driver Bug ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

0.01 0.01 0.01 0.05 0.03 0.06 0.24 0.04 0.03 0.99PNG003 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.15 ± 0.02 ± 0.03 ± 0.44
⊤ 0.02 0.07 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PNG006 ± 0.02 ± 0.03

7.47 17.54 ⊤ 19.49 23.38 ⊤ ⊤ 19.49 19.94 ⊤

libpng read_fuzzer

PNG007 ± 6.93 ± 4.15 ± 7.37 ± 1.39 ± 10.21 ± 9.19

0.43 0.72 − 1.75 0.78 19.97 ⊤ 0.77 20.44 ⊤SND001 ± 0.27 ± 0.29 ± 0.55 ± 0.20 ± 6.74 ± 0.32 ± 8.07
0.55 0.62 − 2.05 5.63 23.25 ⊤ 5.63 15.32 20.49SND005 ± 0.21 ± 0.43 ± 0.79 ± 2.25 ± 1.69 ± 1.55 ± 7.81 ± 7.96
0.36 0.26 − 1.06 6.54 ⊤ 19.52 3.05 ⊤ 18.96SND006 ± 0.23 ± 0.16 ± 0.21 ± 5.97 ± 10.15 ± 2.43 ± 8.45
0.64 0.27 − 2.53 1.39 ⊤ ⊤ 3.33 21.12 22.57SND007 ± 0.27 ± 0.16 ± 0.54 ± 0.73 ± 2.21 ± 6.52 ± 3.24
0.43 0.06 − 0.00 0.01 0.74 0.04 0.02 0.01 14.42SND017 ± 0.28 ± 0.02 ± 0.01 ± 0.02 ± 1.21 ± 0.04 ± 0.02 ± 0.01 ± 11.50
0.71 0.49 − 0.60 0.30 4.76 1.71 0.61 5.53 15.15SND020 ± 0.30 ± 0.14 ± 0.11 ± 0.20 ± 2.72 ± 0.57 ± 0.36 ± 7.39 ± 10.63
0.31 0.26 − 1.03 0.50 21.61 19.38 0.60 21.03 15.07

libsndfile sndfile_fuzzer

SND024 ± 0.24 ± 0.16 ± 0.21 ± 0.30 ± 3.20 ± 10.45 ± 0.26 ± 6.73 ± 10.72

18.44 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤TIF002 ± 6.92
0.01 0.02 0.81 0.27 0.17 0.95 19.62 0.31 2.20 14.93TIF007 ± 0.01 ± 0.01 ± 0.40 ± 0.11 ± 0.07 ± 0.63 ± 9.92 ± 0.18 ± 1.85 ± 10.89

19.97 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤TIF008 ± 5.16
0.16 0.99 6.09 10.32 3.71 14.83 ⊤ 4.56 19.50 ⊤TIF012 ± 0.05 ± 0.47 ± 7.19 ± 6.45 ± 1.45 ± 11.01 ± 3.05 ± 10.17
0.60 1.26 ⊤ 15.46 14.15 20.12 ⊤ 20.07 19.45 ⊤

read_rgba_fuzzer

TIF014 ± 0.20 ± 0.37 ± 10.33 ± 7.31 ± 8.79 ± 8.90 ± 10.29

⊤ ⊤ 14.91 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤TIF005 ± 10.91
7.52 15.40 10.14 ⊤ 22.86 ⊤ ⊤ 18.12 ⊤ ⊤TIF006 ± 4.11 ± 8.28 ± 6.14 ± 2.59 ± 7.14
0.03 0.02 0.73 0.29 0.26 6.26 1.68 0.38 0.66 10.57TIF007 ± 0.02 ± 0.02 ± 0.66 ± 0.09 ± 0.08 ± 7.22 ± 0.45 ± 0.20 ± 0.16 ± 9.61
⊤ 22.17 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤TIF008 ± 4.13

10.33 13.30 ⊤ ⊤ 17.70 ⊤ ⊤ ⊤ ⊤ ⊤TIF009 ± 6.86 ± 7.97 ± 7.79
0.26 0.71 11.57 11.14 4.99 20.42 ⊤ 7.02 ⊤ ⊤TIF012 ± 0.13 ± 0.27 ± 9.09 ± 7.90 ± 1.97 ± 8.11 ± 6.80
0.50 1.60 14.23 8.79 12.87 20.31 ⊤ 13.78 14.22 ⊤

libtiff

tiffcp

TIF014 ± 0.21 ± 0.70 ± 7.56 ± 6.65 ± 8.05 ± 8.35 ± 7.91 ± 6.59
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TABLE 5.4: Magma bugs (continued).

Fuzzer
Target Driver Bug ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

⊤ ⊤ 10.16 13.11 23.23 ⊤ ⊤ 19.99 ⊤ ⊤XML001 ± 3.03 ± 6.48 ± 1.74 ± 4.84
19.51 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤XML002 ± 10.15
4.00 0.78 0.01 0.03 0.04 0.05 0.05 0.05 0.04 0.05XML003 ± 3.45 ± 0.61 ± 0.01 ± 0.03 ± 0.05 ± 0.00 ± 0.04 ± 0.05 ± 0.05 ± 0.06
1.07 0.95 ⊤ 14.59 3.38 15.31 ⊤ 6.70 15.72 ⊤XML009 ± 0.35 ± 0.29 ± 6.94 ± 3.11 ± 10.48 ± 6.33 ± 10.08
0.01 0.01 0.01 0.01 0.07 0.08 0.07 0.07 0.07 0.07

read_memory_fuzzer

XML017 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00

22.88 ⊤ ⊤ 0.01 0.06 0.08 0.07 0.06 0.07 0.07XML001 ± 2.53 ± 0.01 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00 ± 0.00
22.83 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤XML002 ± 2.64
0.59 1.14 4.29 7.16 1.57 18.53 ⊤ 1.18 15.65 ⊤XML009 ± 0.24 ± 0.61 ± 0.12 ± 3.70 ± 0.74 ± 8.70 ± 0.65 ± 10.03

20.61 22.30 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤XML012 ± 4.99 ± 3.84
0.02 0.02 0.01 0.02 0.05 0.06 0.05 0.05 0.05 0.05

libxml2

xmllint

XML017 ± 0.02 ± 0.02 ± 0.01 ± 0.02 ± 0.04 ± 0.04 ± 0.00 ± 0.05 ± 0.00 ± 0.00

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ 19.81 ⊤ ⊤LUA003 ± 9.47
6.06 10.38 ⊤ 0.22 0.02 0.01 0.02 0.01 0.21 0.01lua lua

LUA004 ± 3.88 ± 5.67 ± 0.37 ± 0.02 ± 0.02 ± 0.01 ± 0.02 ± 0.37 ± 0.02

3.53 8.34 ⊤ 21.83 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤SSL001 ± 3.38 ± 4.86 ± 3.63
0.05 0.03 0.00 0.01 0.01 0.01 0.02 0.01 0.01 0.01asn1

SSL003 ± 0.07 ± 0.03 ± 0.01 ± 0.01 ± 0.02 ± 0.02 ± 0.03 ± 0.02 ± 0.01 0.02

0.06 0.06 0.01 0.05 0.02 0.03 0.03 0.02 4.82 0.03
client SSL002 ± 0.00 ± 0.00 ± 0.01 ± 0.05 ± 0.02 ± 0.03 ± 0.03 ± 0.03 ± 10.85 ± 0.02

0.08 0.09 0.18 5.00 0.52 0.69 0.69 5.22 0.39 0.58SSL002 ± 0.00 ± 0.01 ± 0.02 ± 7.60 ± 0.00 ± 0.16 ± 0.27 ± 7.51 ± 0.04 ± 0.02
20.78 ⊤ 6.13 21.90 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤server

SSL020 ± 6.00 ± 0.14 ± 4.76

⊤ ⊤ 0.01 0.11 0.02 0.02 0.02 0.02 0.01 0.02

openssl

x509 SSL009 ± 0.02 ± 0.00 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.02 ± 0.02

1.08 1.47 ⊤ 2.23 11.01 ⊤ 16.14 7.91 16.90 22.22PDF010 ± 0.54 ± 0.96 ± 1.33 ± 4.15 ± 9.47 ± 6.84 ± 5.17 ± 4.03
0.03 0.02 0.23 0.16 0.37 0.31 0.27 0.31 0.25 0.49PDF016 ± 0.01 ± 0.02 ± 0.00 ± 0.03 ± 0.09 ± 0.01 ± 0.01 ± 0.02 ± 0.01 ± 0.03

17.60 15.86 ⊤ 17.35 20.09 ⊤ ⊤ ⊤ ⊤ ⊤PDF018 ± 7.22 ± 4.14 ± 8.27 ± 5.16
23.14 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF019 ± 1.94
23.52 ⊤ ⊤ 22.30 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

poppler pdf_fuzzer

PDF021 ± 1.09 ± 3.86
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TABLE 5.4: Magma bugs (continued).

Fuzzer
Target Driver Bug ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

⊤ 21.31 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF002 ± 6.08
6.89 13.29 0.01 0.00 0.00 0.00 0.00 0.00 4.80 0.00PDF003 ± 3.26 ± 3.79 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 0.01 ± 10.86 ± 0.01
⊤ 19.88 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF011 ± 9.33

0.02 0.01 0.20 0.11 0.20 0.13 0.19 0.15 4.91 0.16PDF016 ± 0.01 ± 0.01 ± 0.06 ± 0.04 ± 0.08 ± 0.03 ± 0.05 ± 0.03 ± 7.64 ± 0.02
3.68 9.13 ⊤ 14.63 20.66 ⊤ ⊤ 6.56 ⊤ ⊤PDF018 ± 1.61 ± 6.32 ± 6.86 ± 7.57 ± 7.09

21.99 14.37 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF019 ± 4.54 ± 7.73
⊤ 22.58 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

pdfimages

PDF021 ± 3.22

20.72 ⊤ ⊤ 22.86 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF006 ± 7.43 ± 2.57
⊤ ⊤ ⊤ 23.49 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF008 ± 1.16

2.20 1.78 12.52 13.13 3.70 ⊤ 19.50 3.66 19.54 17.32PDF010 ± 1.15 ± 0.56 ± 7.98 ± 7.80 ± 0.71 ± 10.18 ± 1.30 ± 10.10 ± 8.99
21.29 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤PDF011 ± 6.14
0.05 0.02 1.29 0.19 0.30 0.23 0.30 0.42 0.17 0.37PDF016 ± 0.05 ± 0.02 ± 0.46 ± 0.07 ± 0.06 ± 0.02 ± 0.06 ± 0.14 ± 0.02 ± 0.02

15.87 15.34 ⊤ 16.95 15.80 ⊤ ⊤ 18.77 ⊤ ⊤PDF018 ± 5.87 ± 4.72 ± 6.77 ± 9.85 ± 6.28
⊤ 17.10 ⊤ 20.74 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

poppler

pdftoppm

PDF021 ± 8.38 ± 7.38

0.72 1.59 ⊤ 11.67 15.07 21.30 ⊤ 19.40 ⊤ ⊤SQL002 ± 0.21 ± 0.84 ± 4.01 ± 10.75 ± 6.12 ± 10.40
22.93 22.74 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤SQL012 ± 2.41 ± 2.86
⊤ 23.49 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤SQL013 ± 1.15

4.38 5.60 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤SQL014 ± 2.57 ± 4.45
1.74 2.74 ⊤ 17.17 ⊤ 21.49 ⊤ 20.03 23.75 ⊤SQL018 ± 0.87 ± 1.37 ± 8.20 ± 5.68 ± 9.00 ± 0.56

17.70 ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

sqlite3 sqlite3_fuzz

SQL020 ± 8.30
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1 #define l_checkmodep(m) \
2 ((m[0] == ’r’ || m[0] == ’w’) && m[1] == ’\0’)

FIGURE 5.7: LUA003 missing popen check.

LUA003. This bug is caused by a missing check of the “mode” argument to popen.
The check is shown in Fig. 5.7. While the check is quickly reached by DDFuzz (af-
ter ∼4 h) and all six DATAFLOW variations (on average, after ∼60 s), the exact trigger
conditions were only met once by DFA+S/A. Upon examining the compiled binary,
we found the second check (m[1] == ’\0’) was optimized to a branchless operation (i.e.,
it did not contain conditional control flow). This effectively makes the program state
where m[1] != ’\0’ invisible to a control-flow-guided fuzzer (in particular, there is no
explicit edge for AFL++ to instrument). This state is explicitly visible to DATAFLOW,
which reaches it after ∼19 h of fuzzing.

LUA004. This is a logic bug, caused by a missing update to the interpreter’s “old”
program counter (occurring under particular conditions when tracing the execution
of a Lua function). Again, there is no explicit “state” in the target’s control-flow graph
(CFG) for the fuzzer to reach. Rather, the bug is triggered when the oldpc field in
the lua_State struct is not updated. This only happens under particular conditions,
again depending on specific data values.

Finding

The control-flow-guided fuzzers (AFL++ and Angora) outperform the data-flow-
guided fuzzers (DDFuzz and DATAFLOW) on 60 % of the triggered Magma bugs.
However, the data-flow-guided fuzzers significantly outperform the control-
flow-guided fuzzers (by orders-of-magnitude) on 11 % of the triggered bugs.
These results suggest that fuzzers guided by control flow and data flow should
be combined to maximize bug-finding potential.

5.5.4 Coverage Expansion (RQ 3)

Control-flow coverage is typically quantified by reasoning over the target’s CFG
(e.g., basic blocks, edges, lines of code). For example, FUZZBENCH replays the
fuzzer’s queue through an independent and precise (i.e., collision-free) coverage
metric; specifically, Clang’s source-based coverage [144, 209]. However, the equivalent
process for quantifying data-flow coverage does not exist.
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We quantify coverage expansion using both control-flow and data-flow metrics, using
(a) static analyses to approximate an upper bound, and (b) dynamic analyses to
quantify coverage expansion against this upper bound. The usual limitations of static
analysis (e.g., undecidability) mean this upper bound may be larger than the set
of executable coverage elements (e.g., a code region may not be reachable from the
target’s driver, or a pointer’s points-to set may be over-approximated). We accept
this imprecision for both metrics (because it is a comparative metric that does not rely
on an absolute value). Per Section 2.6.4, we use the Mann-Whitney U-test [139] to
statistically compare dynamic coverage across fuzzers: two fuzzers cover the same
number of coverage elements if the Mann-Whitney U-test’s p-value > 0.05.

Control-flow coverage. We use Clang’s existing source-based coverage metric [209].
Specifically, we use region coverage (as used by FUZZBENCH), Clang’s version of
statement coverage. Like classic statement coverage, region coverage is more granular
than function and line coverage [94]. Region information is embedded into the target
during compilation and can be statically extracted using existing LLVM tooling (to
obtain the upper bound).

Data-flow coverage. We build a static analysis on SVF [204] (commit d6fe474),
a state-of-the-art value flow and pointer analysis framework. This static analysis
computes the set of def -use chains in a target (for the set of tracked variables, as
determined by the chosen def site sensitivity). This analysis leverages a flow- and
context-insensitive interprocedural pointer analysis based on the Andersen algo-
rithm [4].4 For the dynamic analysis, we modify the PAMD metadata stored at each
def site (Section 5.4.2) to store a tuple of ⟨variable name, location⟩, where location is an-
other tuple ⟨source filename, function name, line, column⟩. Both tuples are constructed
by extracting source-level information from the target’s debug information. A use site
(Section 5.4.2) is similarly labeled with a location tuple. Unlike the 16-bit tags used
by DATAFLOW, this approach does not result in hash collisions and is precise (albeit
with a higher run-time cost). Importantly, neither the static nor dynamic analysis
takes into account def -use chain values. We also exclude dynamic memory allocations
from these analyses (to simplify run-time def -use tracking when faced with custom
memory allocators, per Section 5.4.4).

Table 5.5 and Figs. 5.8 and 5.9 summarize our coverage expansion results. Two targets,
bison and faust, failed to build with AFL++’s CmpLog (again, due to a segmentation
fault) and are excluded from our results.

4We experimented with SVF’s flow-sensitive interprocedural analysis but found the run-time over-
heads prohibitively large.
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TABLE 5.5: Coverage expansion (control and data flow) on DDFuzz tar-
gets, reported as the mean over five repeated trials with 95 % bootstrap
CI. The “static” results give an approximate upper bound, while the
“dynamic” results give the percentage of coverage elements covered
at run time. The best performing fuzzer (fuzzers if the coverages are
statistically equivalent per the Mann-Whitney U-test) for each target
is highlighted in green (larger is better). A ✗ indicates the target failed

to compile or run.

(A) Control-flow coverage. Quantified in terms of Clang’s code region coverage.

Dynamic (%)
Target Static (#) ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

33.47 ✗ 30.84 29.95 32.47 30.83 27.95 31.31 29.59 28.28
bison 35,476 ± 0.08 ± 0.31 ± 3.21 ± 0.39 ± 0.11 ± 0.56 ± 0.12 ± 0.23 ± 0.27

56.35 62.22 23.01 37.56 36.21 22.63 21.51 36.13 21.13 23.01
pcre2test 36,973 ± 1.78 ± 2.25 ± 1.68 ± 0.30 ± 0.00 ± 1.31 ± 1.25 ± 0.32 ± 0.66 ± 1.98

45.35 45.86 43.81 45.45 44.22 41.99 41.95 44.18 42.02 41.78
c2m 43,765 ± 0.07 ± 0.08 ± 0.22 ± 0.07 ± 0.09 ± 0.15 ± 0.22 ± 0.08 ± 0.21 ± 0.17

76.15 76.34 73.94 76.03 74.17 73.03 73.84 74.54 73.20 74.11
qbe 5,400 ± 0.19 ± 0.21 ± 0.03 ± 0.15 ± 0.09 ± 0.03 ± 0.12 ± 0.11 ± 0.14 ± 0.07

32.11 ✗ 29.02 32.07 31.02 30.17 30.57 31.13 30.16 30.31
faust 26,872 ± 0.32 ± 0.09 ± 0.20 ± 0.08 ± 0.04 ± 0.04 ± 0.17 ± 0.03 ± 0.12

(B) Data-flow coverage. Quantified in terms of interprocedural def -use chains (scaled by ×10−3, due to
the small percentage of def -use chains covered across all targets). The c2m target is excluded because it

unexpectedly crashed with our precise data-flow tracking instrumentation.

Dynamic (×10−3 %)
Target Static (#) ALTO ACL An DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

11.60 ✗ 9.94 10.40 11.27 10.71 9.57 11.26 10.60 9.84
bison 9,923,196 ± 0.10 ± 0.17 ± 0.17 ± 0.26 ± 0.10 ± 0.33 ± 0.16 ± 0.03 ± 0.28

181.03 205.78 78.24 125.53 122.72 76.12 69.51 124.83 69.73 73.82
pcre2test 1,401,778 ± 14.78 ± 16.14 ± 7.23 ± 1.53 ± 1.30 ± 4.87 ± 5.71 ± 1.65 ± 2.86 ± 5.99

− − − − − − − − − −
c2m 25,462,192

381.97 378.68 178.28 376.64 363.01 352.61 356.21 366.20 353.24 355.77
qbe 450,407 ± 3.06 ± 4.46 ± 0.47 ± 3.62 ± 1.71 ± 0.36 ± 1.38 ± 0.40 ± 0.62 ± 4.22

5.46 ✗ 4.88 5.55 5.19 4.81 5.01 5.34 4.78 4.89
faust 159,515,187 ± 0.06 ± 0.07 ± 0.06 ± 0.01 ± 0.03 ± 0.05 ± 0.03 ± 0.02 ± 0.07
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FIGURE 5.8: Control-flow coverage expansion over time. The x-axis
is time in seconds (log scale), and the y-axis is the percentage of code
regions expanded (against the static upper bound in Table 5.5a). The
mean coverage (over five repeated trials) and 95 % bootstrap CI is

shown.
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shown.
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AFL++ is again the best-performing fuzzer, achieving the highest control-flow (i.e.,
code region) coverage. CmpLog improves AFL++’s already-strong coverage expan-
sion capabilities. These results are unsurprising, given that control-flow coverage
(specifically, edge coverage) guides AFL++. Similarly, Angora again performs poorly,
outperformed by both DDFuzz and DATAFLOW in maximizing both control- and
data-flow coverage. Curiously, however, AFL++ also achieves the highest data-flow
(i.e., def -use chain) coverage. This is despite DATAFLOW’s data-flow guidance. We
attribute this (surprising) result to the differences in fuzzer iteration rates (i.e., the
number of inputs executed by the fuzzer per unit of time).

Accounting for Iteration Rates

AFL++ (LTO) achieves a mean iteration rate of 1,172 execs/s (median 347 execs/s).
In contrast, DDFuzz, Angora, and DATAFLOW achieve mean iteration rates of 974,
616 and 270 execs/s, respectively (median 442, 249 and 144 execs/s). This dramatic
decrease in iteration rates reflects our overhead results in Section 5.5.2.

To account for differences in iteration rates, rather than comparing coverage at the end
of each fuzz run (i.e., after 24 h of fuzzing), we compare coverage at a given execution
(“exec”). Specifically, we compare coverage at the last exec of the slowest fuzzer (i.e.,
with the lowest iteration rate). Intuitively, this places a “ceiling” on the coverage
achieved by faster fuzzers (i.e., those able to execute more inputs within a single 24 h
fuzz run). For example, DFA+S/V is the slowest fuzzer on bison (85 execs/s). Thus,
we compare the coverage achieved at the last execution of DFA+S/V (exec = 7,358,231),
implicitly ignoring any additional coverage expanded after this exec. Unfortunately,
Angora does not provide the necessary information to map coverage to a particular
exec, so we exclude it from our analysis (despite it being the slowest fuzzer on two
targets: bison and faust).

We present coverage “normalized” against iteration rates in Table 5.6. DATAFLOW is
now more competitive (against AFL++) on expanding data-flow coverage. It achieves
the highest def -use chain coverage on bison and faust, and is only ∼4 % behind the
number of def -use chains expanded by AFL++ on qbe. Again, increasing DATAFLOW’s
use sensitivity to include variable values fails to improve fuzzing outcomes. These
results reinforce our belief that fuzzer iteration rates have a significant impact on
fuzzing outcomes.
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TABLE 5.6: Coverage expansion—control and data flow (“CF” and
“DF”, respectively)—on DDFuzz targets. In contrast to Table 5.5, which
reports the (mean) coverage achieved at the end of a 24 h fuzz run, here
we report the (mean) coverage at the last exec of the slowest fuzzer (“Exec”
occurring at the given “Time”). Dynamic coverage is quantified in
terms of the static analysis results in Table 5.5 (the DF results are again
scaled by ×10−3). The best performing fuzzer (fuzzers if the coverage
is statistically equivalent per the Mann-Whitney U-test) for each target

is highlighted in green (larger is better).

Dynamic (%, ×10−3 %)
Target Exec (#) Time (hr) Metric ALTO ACL DD DFA/A DFA/O DFA/V DFA+S/A DFA+S/O DFA+S/V

32.35 ✗ 28.39 32.17 30.64 27.89 30.90 29.54 28.11CF ± 0.09 ± 3.71 ± 0.47 ± 0.11 ± 0.53 ± 0.20 ± 0.23 ± 0.51
10.95 ✗ 9.56 11.06 10.59 9.55 11.03 10.56 9.79bison 7,358,231 13.74

DF ± 0.09 ± 2.08 ± 0.24 ± 0.06 ± 0.34 ± 0.08 ± 0.08 ± 0.35

37.51 55.79 36.66 35.85 22.56 21.38 35.82 21.12 23.01CF ± 0.30 ± 1.09 ± 0.16 ± 0.00 ± 1.28 ± 1.15 ± 0.29 ± 0.66 ± 1.98
124.40 182.84 122.42 121.02 75.96 69.08 123.47 69.73 73.82pcre2test 37,992,897 8.22

DF ± 1.69 ± 11.61 ± 0.77 ± 0.68 ± 4.72 ± 5.31 ± 1.68 ± 2.83 ± 5.99

43.20 43.44 43.41 42.84 41.44 41.67 42.77 41.39 41.61CF ± 0.13 ± 0.08 ± 0.27 ± 0.11 ± 0.24 ± 0.25 ± 0.22 ± 0.11 ± 0.19
− − − − − − − − −c2m 516,654 5.27

DF

75.39 75.27 75.28 74.11 72.93 73.82 74.41 73.02 74.05CF ± 0.07 ± 0.12 ± 0.10 ± 0.12 ± 0.06 ± 0.12 ± 0.10 ± 0.13 ± 0.09
368.69 368.38 368.33 362.03 352.53 356.17 364.83 352.93 355.68qbe 12,589,430 15.78

DF ± 1.33 ± 1.73 ± 1.20 ± 1.89 ± 0.38 ± 1.33 ± 0.75 ± 0.67 ± 4.26

31.26 ✗ 31.05 30.80 30.12 30.49 30.86 30.15 30.25CF ± 0.04 ± 0.08 ± 0.06 ± 0.04 ± 0.06 ± 0.08 ± 0.04 ± 0.12
5.25 ✗ 5.22 5.13 4.79 4.99 5.22 4.77 4.87faust 1,033,846 23.97

DF ± 0.02 ± 0.01 ± 0.01 ± 0.03 ± 0.05 ± 0.00 ± 0.01 ± 0.08

Finding

The control-flow-guided fuzzers (specifically, AFL++) achieve the highest control-
and data-flow coverage. Data-flow-guided fuzzers require more complex instru-
mentation (compared to control-flow-guided fuzzers), impairing the fuzzers’
iteration rates.

5.5.5 Characterizing Data-Flow (RQ 4)

The fuzzing community has largely settled on control-flow-based coverage metrics—
in particular, edge coverage—to drive a fuzzer’s exploration. While prior successes
have largely validated this approach [52, 181, 189, 207, 231], we wish to understand
what (if any) program characteristics lend themselves to data-flow-based coverage.

Mantovani, Fioraldi, and Balzarotti [141] propose the DD ratio—defined as the ratio
between the number of basic blocks instrumented with data-dependency information
over the total number of basic blocks in the target—to determine whether data-
flow-based coverage—derived from the target’s data dependency graph (DDG)—
adds value (e.g., over edge coverage). A higher DD ratio suggests the target is
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TABLE 5.7: Characterizing data flow using the data dependency ratio
(“DD ratio”) introduced by Mantovani, Fioraldi, and Balzarotti [141].
Strongly data-dependent targets (i.e., those with a DD ratio ≥ 10 %)

are highlighted in green.

(A) Magma.

Target DD ratio (%)

png_read_fuzzer 13.40
sndfile_fuzzer 12.14
tiff_read_rgba_fuzzer 12.01
tiffcp 11.37
xml_read_memory_fuzzer 12.86
xmllint 13.03
lua 12.73
asn1 9.89
client 9.99
server 9.98
x509 9.98
pdf_fuzzer 11.62
pdfimages 9.33
pdftoppm 11.77
sqlite3_fuzz 12.80

(B) DDFuzz target dataset.

Target DD ratio (%)

bison 6.59
pcre2test 22.60
c2m 21.82
qbe 12.45
faust 7.29

more amenable to data-flow-guided fuzzing; a target with a DD ratio above 10 % is
considered strongly data dependent.

Table 5.7 summarizes the DD ratio of our 20 target programs.5 Thirteen of these
targets (65 %) have DD ratios ≥ 10 %, indicating their suitability for data-flow-guided
fuzzing. However, we found little correlation between a target’s DD ratio and fuzzing
outcomes (both bug finding and coverage expansion). For example, png_read_fuzzer
had the highest DD ratio among the Magma targets (13.40 %), closely followed by
xmllint (13.03 %). However, AFL++ outperformed the data-flow-guided fuzzers
(DDFuzz and DATAFLOW) on both targets (across bug counts and survival times).
Similarly, pcre2test and c2m had the highest DD ratios among the DDFuzz targets
(22.60 and 21.82 %, respectively). Again, AFL++ outperformed the two data-flow-
guided fuzzers (across both control- and data-flow coverage expansion).

Based on these results, we conclude that the DD ratio is not suitable for determin-
ing a target’s suitability for data-flow-guided fuzzing. Instead, we propose using
subsumption.

5These values differ from the original DDFuzz evaluation [141] because we use newer versions of the
targets (per Section 5.5.1).
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Finding

The “DD ratio” is not suitable for determining whether a target is amenable
to data-flow-guided fuzzing. Alternative techniques—such as those based on
subsumption—may yield more accurate results.

5.5.6 Discussion

Coverage sensitivity. In Section 5.3.1, we introduced a framework for reasoning
about and constructing data-flow coverage metrics for greybox fuzzing. This frame-
work allows the user to balance precision with performance. Our results suggest
that fuzzing outcomes (i.e., bug finding and coverage expansion) fail to improve as
precision increases. Notably, this finding also applies to Angora; Angora’s exact DTA
provided little benefit over the approximate DTA used by AFL++’s CmpLog mode.
Our results reflect prior findings that demonstrate the importance of maximizing
fuzzer iteration rates [9, 68, 92, 173, 225].

Bugs vs. coverage. Böhme, Szekeres, and Metzman [23] found the fuzzer best at
maximizing coverage expansion may not be best at finding bugs. Our results reflect
this finding; despite AFL++ outperforming DATAFLOW on coverage expansion (Sec-
tion 5.5.4), DATAFLOW triggered bugs AFL++ failed to find (Section 5.5.3). Ultimately,
fuzzers are deployed to find bugs and vulnerabilities; our findings reinforce the need
for bug-based fuzzer evaluation [84, 115, 234] (not only a comparison of coverage
profiles).

Computing coverage upper bounds with static analysis. In Section 5.5.4 we used
static analysis to approximate a coverage upper bound (for both control- and data-
flow coverage). In theory, this upper bound is useful for estimating the residual risk
of ending a fuzz run before maximizing coverage (analogous to the residual risk of
missing a bug [20]). In practice, static analysis of “real-world” programs is fraught;
dynamically loaded, just in time (JIT), and inline assembly code all impact preci-
sion. Even specific command-line arguments influence the reachability of particular
code regions. Thus, it is difficult to determine how realistic the upper bounds in
Section 5.5.4 are. We return to this issue in Chapter 6.

Control- or data-flow? We hypothesized that data-flow-guided fuzzing offers supe-
rior performance on targets where control flow is decoupled from semantics. Our
results lead us to reject this hypothesis. In most cases, control-flow-guided fuzzers
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outperformed data-flow-guided fuzzers (across both bug-finding and coverage-
expansion metrics, and on targets identified as being amenable to data-flow-guided
fuzzing). However, we are not prepared to give up on data-flow-guided fuzzing;
despite lower run-time costs than DTA, DATAFLOW’s run-time costs remain high,
negatively impacting coverage expansion. Despite this impediment, DATAFLOW

discovers bugs control-flow-guided fuzzers do not. We believe reducing the run-time
costs of data-flow-guided fuzzers will improve fuzzing outcomes.

5.6 Future Work

Our results highlight the opportunities for further work on data-flow-based coverage
metrics. We propose ideas for further exploration here.

Reducing overheads. The significant run-time overheads remain the primary im-
pediment to the adoption of data-flow-guided fuzzing (see Section 5.5.2). Liu and
Criswell [128] propose using interprocedural optimizations to eliminate unnecessary
object (de)allocation in the baggy bounds table, improving performance. Similarly,
more sophisticated pointer analyses (e.g., those provided by SVF) could be used
to eliminate unnecessary def /use site instrumentation (e.g., removing redundant
instrumentation when def -use chains can be statically identified).

Reducing hash collisions. Per Section 5.4.3, DATAFLOW is prone to hash collisions.
It is well known that hash collisions cause fuzzers to miss program behaviors [67].
While AFL++’s LTO mode solves the hash collision problem for edge coverage, we did
not investigate a similar technique for def -use chain coverage. A hash-collision-free
DATAFLOW may lead to improved coverage expansion.

Combining control- and data-flow coverage. Finally, DATAFLOW exclusively uses
def -use chain coverage to drive exploration. In contrast, other data-flow-guided
fuzzers (e.g., INVSCOV [61], DDFuzz [141]) combine data flow with control flow. Given
our bug-finding results—i.e., those where DATAFLOW significantly outperformed
AFL++ (e.g., LUA003, LUA004, SSL009, and PDF003)—combining DATAFLOW with
edge coverage may provide a “best of both worlds” solution (echoing the conclusions
reached by Salls et al. [183]). This combination of coverage metrics could be realized
by combining control- and data-flow coverage in a single coverage map, maintaining
separate coverage maps, or by dynamically switching between different instrumented
targets.
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Coverage metric subsumption. Our results in Section 5.5.5 led us to conclude
that the DD ratio was not suitable for determining a target’s suitability for data-
flow-guided fuzzing. Prior work on characterizing programs for automated test
suite generation is also unsuitable; e.g., the approaches proposed by Neelofar et al.
[155] and Oliveira et al. [160] are specific to object-oriented software and focus on
control-flow features. Instead, we propose subsumption.

We say that coverage metricM1 strictly subsumes metricM2 if covering all coverage
elements inM1 also covers all elements inM2. For example, edge coverage strictly
subsumes basic block coverage. Relaxing this definition of strict subsumption allows
us to quantify the number of coverage elements inM2 not subsumed byM1. Intu-
itively, more elements inM2 not subsumed byM1 implies fuzzing withM2 will
lead to behaviors not detectable byM1. Static data-flow analysis frameworks such as
those proposed by Chaim et al. [29] can be used to perform this subsumption analysis.
We leave the investigation of such techniques for future work.

5.7 Chapter Summary

Observing fuzzers that introduce taint tracking along with control flow, we investigate
data flow as an alternate coverage metric, making data-flow coverage a first-class
citizen. Driven by empirical results and the conventional wisdom gathered over
years of software-testing research, we hypothesized data-flow-guided fuzzing to offer
superior outcomes (over control-flow-guided fuzzing) in targets where control flow
is decoupled from semantics.

Our results show that control-flow-guided fuzzing produces better outcomes (bug
finding and coverage expansion) in most cases. The high run-time costs associated
with data-flow tracking impaired the fuzzer’s ability to explore a target’s behavior
efficiently. Despite these costs, our data-flow-guided fuzzer discovered bugs control-
flow-guided fuzzers did not. These results suggest that data-flow-guided fuzzers
discover different, not more, bugs. Specifically, bugs existing in program states not
explicitly visible in the target’s CFG.

In the next chapter we conclude the fuzzing campaign (④ in Fig. 1.1, Chapter 1).
Specifically, we expand on our use of static analyses to quantify control- and data-
flow coverage (Section 5.5.4) and investigate their use more broadly in measuring a
fuzzer’s state space search.
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Chapter 6

Quantifying State Space Search

In Chapter 5 we introduced a pair of static analyses for quantifying coverage ex-
pansion using control-flow and data-flow metrics. Here, we expand on this idea
and investigate the use of several state-of-the-art static analyses for quantifying the
upper-bound of a fuzzer’s state space search.

6.1 Introduction

Measuring how much of a target’s state space has been explored per fuzzer is challeng-
ing. Fuzzer evaluations typically avoid measuring this by only reporting a count of
covered coverage elements (e.g., the number of lines of code executed). However, a
raw count is insufficient in many cases. For example, determining the residual risk [20]
of stopping the fuzzer requires deriving an accurate upper bound of target P’s state
space, and from this determining how much of P’s state space has been explored.

One approach for deriving an upper bound of P’s state space is to count the number
of edges in P’s control-flow graph (CFG). However, this approach is fraught: while
the number of direct edges (both intra- and inter-procedural) is computable during
instrumentation, indirect edges (e.g., function calls made by dynamic dispatch, such as
the calls to bar, baz, and foo in Fig. 1.2) and exceptional control flow (e.g., try/catch
blocks) make counting edges difficult (and in some cases, impossible). Moreover, the
set of reachable basic blocks in P’s CFG depends on the driver (i.e., the program that
interfaces with the codebase—typically a library—under test) and even the command-
line arguments used to run the driver [235]! The former (basic block reachability)
requires accurate control flow recovery, while the latter (command-line arguments)
requires accurate data flow recovery. While perfect control- and data-flow recovery
is undecidable, all is not lost: modern static analyzers [79, 80, 119, 185, 204] have
demonstrated precise and scalable control- and data-flow analyses on real-world
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programs [54, 119, 203]. Can we use these techniques to make an accurate per-fuzzer
evaluation?

Despite their long history, the application of static program analyses to fuzzing—in
particular, to reason about state space exploration—is under explored. This chapter
aims to rectify this, and improve understanding of fuzzers’ state space search through
program analysis.

Chapter outline. We investigate the use of several static analyses for quantifying
control-flow coverage. We first propose our analysis technique (Section 6.2), and then
apply our technique to a large-scale fuzzing campaign (Section 6.3).

6.2 Program Analysis for State Space Search

Traditionally, a fuzzer’s state space search is quantified using control-flow-based
metrics (e.g., the number of CFG edges or lines of code executed). However, these
control-flow-based metrics are often context insensitive, despite the fact that different
invocations of a function may lead to different program behaviors (as in Figs. 1.2
and 7.1c ). Moreover, accurate comparisons of fuzzers’ state space search require the
ability to unambiguously identify and correlate points across executions [205, 224].
Notably, context-insensitive control-flow coverage (such as the approach used by
FUZZBENCH) does not meet this requirement: using {source file × line number} to
uniquely identify an execution point introduces ambiguities; e.g., in the presence of
loops (iteration count), function calls (context sensitivity), and data values.

We overcome this issue by introducing a technique that quantifies control-flow cov-
erage using a context sensitive interprocedural control-flow graph (ICFG) analysis. This
technique can be used (a) for determining how much of a target’s state space has
been explored by a given fuzzer, and (b) to uniquely identify and compare execution
points covered by a fuzzer. The former improves the accuracy of per-fuzzer evaluation,
while the latter improves cross-fuzzer evaluation. We develop (a) a static analysis to
quantify an upper bound of reachable context-sensitive edges (Section 6.2.1), and
(b) a dynamic analysis to trace context-sensitive edges (Section 6.2.2).

6.2.1 Static Analysis

Our static analysis first constructs an intraprocedural CFG for each function f in P.
These CFGs are then combined to create the ICFG by inserting edges from a call

instruction to the entry block of the callee’s CFG. Indirect calls are resolved via an
off-the-shelf static pointer analysis (discussed further in Section 6.2.3).
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We augment edges in the ICFG with calling context information. The number of
calling contexts for f can be statically computed by [206, 238]:

C( f ) = ∑
i=1...n

C(gi) (6.1)

Where {g1, . . . , gn} are the caller functions of f . The total number of context-sensitive
edges is obtained by propagating C( f ) to each intraprocedural edge in f . Our ICFG
analysis is flow-insensitive, so the number of context-sensitive edges may be infinite
in the presence of recursion. In this case, we apply the approach proposed by Sumner
et al. [206]: (i) a dummy entry node is inserted into P’s call graph; (ii) edges are
added from this dummy node to (a) the original entry node, and (b) any node that
is a target of a backward edge (i.e., recursive call); and (iii) backward edges are
removed, making the call graph acyclic. From here, Eq. (6.1) is applied. This process
implicitly collapses recursive calls and thus mimics the approach taken by fuzzers
using context-sensitive coverage (Section 3.2.4).

6.2.2 Dynamic Analysis

Our dynamic analysis inserts instrumentation (at compile time) at the entry of each
basic block and function in P. At run time this instrumentation logs (a) hit counts
for intraprocedural branches and function calls/returns, and (b) calling contexts.
Recursive function calls are collapsed into a single call so the dynamic calling context
is aligned with the static calling context. An offline, post hoc analysis reconstructs the
context-sensitive ICFG from these traces.

6.2.3 Implementation

Our static and dynamic analyses are built on LLVM v14 [120]. We use the following
pointer analysis frameworks and configurations for resolving indirect calls (thus
improving the accuracy of our static analysis).

Fuzz Introspector. Fuzz Introspector—part of Google’s OSS-Fuzz service [189]—is
a static analysis for computing the set of reachable functions in a given target [32].
However, Fuzz Introspector “makes few efforts into resolving indirect calls”, limiting
itself to C++ v-table entries and function pointers assigned to variables and passed as
function arguments.1

1Per https://github.com/ossf/fuzz-introspector/blob/f01aaee5/frontends/llvm/lib/
Transforms/FuzzIntrospector/FuzzIntrospector.cpp#L967-L969.

https://github.com/ossf/fuzz-introspector/blob/f01aaee5/frontends/llvm/lib/Transforms/FuzzIntrospector/FuzzIntrospector.cpp#L967-L969
https://github.com/ossf/fuzz-introspector/blob/f01aaee5/frontends/llvm/lib/Transforms/FuzzIntrospector/FuzzIntrospector.cpp#L967-L969
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SVF. SVF [204] is a value flow and pointer analysis framework. Our SVF analysis
uses a flow- and context-insensitive interprocedural pointer analysis based on the An-
dersen algorithm [4], similar to that used in Section 5.5.4. Also similar to Section 5.5.4,
we experimented with SVF’s flow-sensitive interprocedural analysis but found that
the analysis failed to complete within 24 h on a majority of targets.

SEADSA. SEADSA is a context-, field-, and array-sensitive unification-based pointer
analysis. We use the same configuration as Kuderski, Navas, and Gurfinkel [119]:
“bottom-up + top-down context sensitive” analysis with “type awareness”.

6.3 Evaluation

Our evaluation aims to answer the following research question:

RQ 1 How effective are state-of-the-art static analyses at estimating the upper bound
of a target’s state space? (Section 6.3.2)

6.3.1 Methodology

Target Selection

We evaluate our static analyses on the FUZZBENCH [144] benchmark. We chose
FUZZBENCH over other fuzzer benchmark suites (e.g., Magma [84]) because it is
widely used and “uses code coverage as its primary evaluation metric” [144]. We exclude
the “bug-based” targets and focus on the 23 “coverage” targets. We also exclude
libjpeg-turbo, libpcap, libxml2, proj4, and systemd, which failed to build/run. The
remaining 23 targets are listed in Table 6.1.

Experimental Setup

We run a number of fuzzing campaigns using a range of fuzzers.2 Each campaign
consists of ten independent 24 h trials (consistent with the recommendations by
Klees et al. [115]). All experiments were conducted on a Dell PowerEdge server
with a 48-core Intel® Xeon® Gold 5118 2.30 GHz CPU, 512 GiB of RAM, and running
Ubuntu 18.04. We use FUZZBENCH’s default starting seeds to bootstrap all trials.

2These are the same campaigns as those in Chapter 7. Because we are only interested in the static
analysis results here, we defer the details of these campaigns until Section 7.3.
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TABLE 6.1: FUZZBENCH target statistics, including: the programming
language the target is written in (“Lang”), the number of functions
(“F”), the number of basic blocks (“BB”), and the number of static

indirect call sites (“Ind.”).

Target Lang. F BB Ind.

bloaty C++ 5,626 99,259 1,413
curl C 7,040 69,772 1,677
freetype2 C 2,279 21,007 672
harfbuzz C++ 17,235 42,748 300
jsoncpp C++ 455 6,922 23
lcms C 1,032 6,528 202
libpng C 459 4,788 11
libxslt C 2,227 36,379 2,163
mbedtls C 1,851 14,311 99
openh264 C++ 664 10,608 96
openssl C 9,381 48,406 1,244
openthread C++ 7,497 25,302 158
re2 C++ 4,011 10,841 49
sqlite3 C 2,265 33,105 247
stb C 220 2,455 11
vorbis C 339 3,802 33
woff2 C++ 3,380 12,274 66
zlib C 51 688 9

6.3.2 Static Analysis Performance (RQ 1)

As discussed in Chapter 1, static analyses have garnered a reputation for being more
harmful than helpful, due to the many false positives/negatives they emit. Moreover,
they often fail to scale to “real-world” programs. In Chapter 5 we developed a
suite of static analyses to quantify control- and data-flow-coverage achieved by our
DATAFLOW fuzzer. However, we did not investigate the accuracy of these analyses.
Here, we empirically investigate the accuracy of modern static analyses in the context
of fuzzing, focusing on the effectiveness of a static analysis in quantifying the upper
bound of a fuzzer’s state space search.

Table 6.1 summarizes the control-flow elements of the 23 FUZZBENCH coverage tar-
gets, while Table 6.2 summarizes the control-flow elements reachable from the target’s
entry point (i.e., elements that may be covered during fuzzing). We use the static
analyses discussed in Section 6.2.3 to determine reachability, namely: Fuzz Introspec-
tor (commit fe9c68b), SVF (commit a3fc9cc), and SEADSA (commit fda066e). We
also considered the cclyzer++ pointer analysis framework [66] (commit 1a64af9),
but found that its analysis failed to complete within 24 h on most targets.

Table 6.2 shows wildly varying results across the three evaluated static analyses. In
particular, SVF and SEADSA often report a greater number of reachable functions
compared to Fuzz Introspector (e.g., up to ∼13× on the woff2 target). We attribute
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TABLE 6.2: Static analysis results, showing the number of functions
(“F”), basic blocks (“BB”), edges (“E”), and context-sensitive edges
(“Ectx”) reachable from the driver program. A ✗ indicates the analysis

failed or did not complete (within 24 h).

Fuzz Introspector SVF SEADSA
Target F BB E Ectx F BB E Ectx F BB E Ectx

bloaty 278 4,734 8,529 34,979 ✗ ✗ ✗ ✗ 1,817 37,204 137,497 7,629,437
curl 1,327 14,694 33,323 133,601 ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

freetype2 327 3,066 6,400 15,550 2,010 19,192 130,177 11,265,197 686 4,329 9,654 39,754
harfbuzz 10,521 28,851 87,695 259,811 12,132 32,833 101,924 4,186,525 10,250 27,897 82,532 353,143
jsoncpp 37 204 623 1,352 81 391 1,339 3,319 54 638 1,243 4,460
lcms 253 1,708 4,027 23,535 ✗ ✗ ✗ ✗ 847 5,424 21,450 106,226
libpng 216 3,106 6,297 12,503 297 3,211 6,913 21,954 275 3,242 6,723 20,480
libxslt 477 7,453 15,095 112,247 1,669 28,732 102,445 8,690,806 1,538 28,389 71,749 4,575,223
mbedtls 816 6,790 17,783 70,045 1,135 8,462 27,626 168,129 1,094 8,338 21,937 102,192
openh264 21 64 141 191 761 10,364 24,342 109,202 611 10,366 19,971 101,145
openssl 1,535 7,494 20,635 166,769 4,698 29,835 176,491 26,363,048 ✗ ✗ ✗ ✗

openthread 5,917 20,622 67,193 261,847 3,239 8,805 26,401 186,350 5,680 20,489 63,866 981,359
re2 545 2,762 8,346 20,659 3,411 7,284 24,093 83,466 725 1,841 5,156 19,899
sqlite3 1,689 27,626 65,628 470,460 2,285 32,647 132,147 21,591,726 2,059 31,730 72,517 4,617,764
stb 158 2,186 4,891 15,636 190 2,262 5,615 24,659 161 2,255 5,115 17,992
vorbis 121 1,302 2,604 8,299 187 1,783 4,007 15,855 157 1,780 3,388 13,321
woff2 95 2,774 4,603 10,802 1,259 4,431 10,495 20,191 1,224 4,685 10,241 25,300
zlib 22 567 936 1,005 23 567 986 1,068 24 569 984 1,062

this increase to the more sophisticated pointer analysis techniques used by SVF and
SEADSA, allowing these analyses to resolve more indirect calls.

Notably, there is no significant correlation between the number of indirect calls (listed
in Table 6.1) and this increase in reachable functions. For example, woff2 has only 66
indirect calls and a ∼13× increase in reachable functions. Instead, the complexity
of the target’s data flow determines how significantly the Fuzz Introspector and
SVF/SEADSA results differ.

The number of reachable control-flow elements also varies between SVF and SEADSA.
We attribute this to algorithmic and implementation differences. Notably, SVF failed
to analyze more targets than SEADSA. While both failed to analyze curl, SEADSA

failed to analyze openssl (while SVF’s analysis completed) and SVF failed to ana-
lyze bloaty and lcms (which SEADSA’s analysis completed). This—combined with
cclyzer++’s inability to complete its analysis on any target within 24 h—suggests that
scalability issues remain in even state-of-the-art static analysis frameworks.

Table 6.3 summarizes the number of control-flow elements covered by at least one
fuzzer. Comparing these results to those in Table 6.2, we see that Fuzz Introspector
often undercounts the number of reachable functions (e.g., reporting 278 reachable
functions in bloaty, while 1,101 were covered at run time). Differences between the
static and dynamic analysis results become more pronounced when comparing more
sensitive coverage metrics; in particular, context-sensitive edges (Ectx in Tables 6.2
and 6.3). This is unsurprising, as static analysis errors (false positives and false
negatives) are compounded as the analysis becomes more sensitive. This is evident
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TABLE 6.3: The number of control-flow elements covered. The control-
flow elements are the same as those in Table 6.2: the number of func-
tions (“F”), basic blocks (“BB”), edges (“E”), and context-sensitive

edges (“Ectx”).

Target F BB E Ectx

bloaty 1,101 5,571 8,762 25,944
curl 1,546 10,737 15,208 27,872
freetype2 1,016 9,199 13,588 37,820
harfbuzz 11,223 28,515 51,215 154,310
jsoncpp 113 664 903 2,173
lcms 283 1,484 2,122 5,610
libpng 162 1,789 2,441 4,686
libxslt 798 10,471 15,240 65,560
mbedtls 623 3,885 5,106 10,982
openh264 431 8,575 11,862 15,800
openssl 1,269 6,608 10,169 76,694
openthread 2,477 5,338 11,169 19,499
re2 580 3,049 4,441 7,381
sqlite3 1,762 21,755 32,931 374,597
stb 142 1,765 2,293 3,700
vorbis 131 1,280 1,728 2,753
woff2 101 1,798 2,449 2,934
zlib 20 388 547 554

in bloaty, where SEADSA reported 7,629,437 reachable context-sensitive edges, while
only 25,944 were covered at run time. These differences (in context-sensitive edges)
continue in curl (Fuzz Introspector), harfbuzz (SVF), lcms (SEADSA), libxslt (SEADSA),
mbedtls (SVF), openssl (SVF), openthread (SEADSA), and sqlite3 (SVF and SEADSA).

Finding

The number of reachable control-flow elements varies wildly (a) across the eval-
uated static analyses, and (b) compared to the number of covered control-flow
elements. This suggests the static analysis results are unrealistic.

False Negatives

In Table 6.4 we summarize the accuracy of these static analysis results by examining
false negatives: the number of control-flow elements the static analysis labeled un-
reachable but were reachable by a fuzzer. Quantifying false positives is undecidable;
there is no way of knowing if a control-flow element (e.g., CFG edge) is unreachable
or if the fuzzer failed to generate a valid input for covering that element. Because
false negatives (and false positives) can only occur due to indirect function calls3, we
focus on the function call graph.

3Or bugs in the static analyzer, which we ignore.
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TABLE 6.4: The number of static analysis false negatives; i.e., the num-
ber of indirect function calls that the static analysis (one of “Fuzz
Introspector”, “SVF”, and “SEADSA”) labeled unreachable but were
covered by a fuzzer. The best performing static analyzer for each
target is highlighted in green (lower is better). A ✗ indicates the static

analysis failed.

Target Fuzz Introspector SVF SEADSA

bloaty 2,155 ✗ 2,160
curl 451 ✗ ✗

freetype2 572 163 407
harfbuzz 285 62 94
jsoncpp 137 137 162
lcms 80 ✗ 2
libpng 14 6 6
libxslt 177 4 20
mbedtls 45 0 1
openh264 82 0 7
openssl 414 87 ✗

openthread 29 20 125
re2 176 165 211
sqlite3 235 22 26
stb 8 0 0
vorbis 23 5 5
woff2 36 20 29
zlib 3 3 0

Despite failing on the most targets, SVF was the best performer with the lowest
number of false negatives on the most targets. In comparison, Fuzz Introspector
was the worst performer. Despite this—and its relatively straightforward approach
to resolving indirect function calls (Section 6.2.3)—Fuzz Introspector outperforms
SEADSA on four targets (bloaty, jsoncpp, openthread, and re2).

We analyzed these false negatives and attribute most of them to custom memory
allocators. In Section 5.4.4 we discussed the prevalence and impact of custom memory
allocators on DATAFLOW. In particular, custom memory allocators required user
intervention to ensure def -use sites were appropriately instrumented. Here, custom
memory (de)allocation routines are passed to functions inside structs. Dynamically
(de)allocating memory thus requires making indirect function calls via struct offsets,
which SVF and SEADSA are unable to reason about. We hypothesize that a “structure-
sensitive” analysis—such as that used by cclyzer++ [13, 66]—would perform better
in these circumstances. Unfortunately, this increased accuracy incurs a significant
performance penalty, often resulting in the analysis failing to complete (within 24 h).
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Finding

The high variance in results across the three static analyzers, together with the
number of false negatives, indicates that even state-of-the-art static analyzers are
inadequate for quantifying the upper-bound of a fuzzer’s state space search.

6.4 Discussion

Liyanage et al. [129] also investigated the use of static analysis to quantify fuzzer
effectiveness; computing an upper bound on the number of reachable coverage ele-
ments.4 Liyanage et al. [129] also found that static analysis significantly over-counted
reachable coverage, and our findings reinforce their results. Consequently, we en-
courage static analysis developers to further improve the accuracy and scalability
of their tools, particularly on “real-world” targets. In particular, this could include
developing new benchmark suites that contain larger, more complex codebases more
indicative of “real-world” software.

6.5 Future Work

Based on our results, we propose the following ideas for future work.

Root cause quantification for missing control-flow edges. In Section 6.3.2 we ana-
lyzed the accuracy of three static analyzers by quantifying the number of unlabeled
call graph edges. While this analysis was manual, automatic techniques would help
in improving the accuracy of these static analyzers. For example, Chakraborty et al.
[30] develop a technique to “automatically quantify the relative importance of different
root causes of call graph unsoundness for a set of target [JavaScript] applications”. While
their study focused on JavaScript call graphs, their techniques are generalizable to
other languages (here, we are interested in LLVM intermediate representation (IR)),
and could be used to improve the accuracy of LLVM-based static analyzers (which
we found to be severely lacking).

Quantifying data flow. In Section 5.5.4 we quantified data-flow coverage by com-
puting the set of def -use chains in a target. An alternative approach is to quantify
data flow over program variable values. This approach is akin to the data abstractions
used in abstract interpretation and model checking (discussed in Chapter 1). We

4Our work was carried out concurrently. Liyanage et al. [129] evaluated SVF on five targets from
the Software-artifact Infrastructure Repository, whereas we evaluated a larger number of targets from
FUZZBENCH and also evaluate Fuzz Introspector and SEADSA.
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propose using a static analyzer (e.g., CLAM, a static analyzer for LLVM built on the
CRAB library [79]) to compute inductive invariants—computed as basic block pre-
and post-conditions—for each variable in P. These invariants provide the range
of values a variable can take. By instrumenting these variables, we can track their
value at run time, providing another measure of “state space coverage”. We leave the
implementation and evaluation of such analyses for future work.

6.6 Chapter Summary

This chapter discussed the difficulties in quantifying a fuzzer’s state space search.
To address this, we proposed using context-sensitive static analyses to quantify the
control-flow elements of a fuzzer’s state space search. Unfortunately, our results
also show that even state-of-the-art static analyses are far from accurate on typical
fuzzer targets; they either failed to complete their analysis or produced unrealistic
results. We hope these results and ideas for future work inspire others to improve the
accuracy and scalability of static analyses for real-world codebases.

In the final chapter, we provide a comprehensive evaluation of the full range of
coverage metrics discussed throughout this dissertation.
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Chapter 7

Comparison of Coverage Metrics

This final chapter provides a comprehensive evaluation of the full range of coverage
metrics discussed throughout this dissertation. To do this, we propose a methodology
for fairly comparing coverage metrics.

7.1 Introduction

As described in Chapter 3, fuzzers use a coverage metric to measure their progress in
exploring a target’s state space. This coverage metric abstracts the target’s state space,
leading the fuzzer to uncover new behaviors in the target (by revealing new states
in the state space). Moreover, fuzzers are often evaluated based on their coverage
of a target’s state space: fuzzer f1 is “better” than fuzzer f2 if f1 explores more of
the target’s state space than f2. Popular fuzzer benchmarks (e.g., FUZZBENCH [144])
exemplify these ideas, relying solely on aggregate control-flow coverage accumulated
over a fuzzing campaign. However, as we have repeatedly shown throughout this
dissertation, this only covers a single dimension of a target’s state space. How can
we more-accurately characterize a fuzzer’s state space search?

Chapter outline. We begin by demonstrating the weaknesses of current approaches
to measuring and comparing fuzzers based on coverage profiles, motivating the need
for alternative techniques (Section 7.2). We then use the dynamic analysis introduced
in Chapter 6 to evaluate the performance of 15 coverage metrics—spanning the full
range of control- and data-flow-based metrics discussed in Chapter 3 (Section 7.3).

7.2 Motivation

Coverage measures (e.g., number of lines of code) are commonly used to evaluate
and compare a fuzzer’s performance, serving as a proxy for a fuzzer’s bug-finding
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FIGURE 7.1: Coverage exploration by AFL++ over ten repeated 24 h
trials with two coverage metrics—coarse-grained probabilistic edge
coverage and context-sensitive probabilistic edge coverage—on
FUZZBENCH’s libpng. The x-axis shows wall-clock time (log scale
in seconds) and the y-axis shows the number of covered measurement
points (source, edges, and context-sensitive edges in Figs. 7.1a to 7.1c ,
respectively). Each figure shows mean coverage and 95 % bootstrap

confidence interval (CI).

ability (after all, you cannot find bugs in code never executed) [115]. Consequently,
we can use coverage to reason about the residual risk of stopping a fuzzing campaign
too early (i.e., while the fuzzer is still discovering new program behaviors) [20].
Unfortunately, reasoning about coverage as an approximation for exercised program
behaviors is hard. We discuss the difficulties here.

Visualizing fuzzers’ progress via plots showing coverage growth over time are a
common sight in fuzzer evaluations [9, 16, 19, 21, 36, 37, 39, 40, 43, 46, 51, 62, 67,
68, 85, 90, 91, 100, 125, 133, 144, 157, 173, 174, 184, 186, 190, 198, 213, 217, 227, 229].
We continue this trend in Fig. 7.1, showing the coverage achieved by AFL++ on
FUZZBENCH’s libpng target with two coverage metrics: coarse-grained probabilistic
edge coverage (AFL edge coverage, denoted PAFL) and context-sensitive probabilistic
edge coverage (AFL edge coverage augmented with calling context, denoted Pctx).1

We generate these plots using a “record and replay” (R&R) approach. This approach
allows us to view the progress made fuzzing PAFL through the “point-of-view” (PoV)
of Pctx (and vice versa). R&R: (i) records PAFL’s current input at regular intervals
(here, every 1,000 inputs), storing the results in SAFL; and then (ii) replays SAFL

through Pctx (post hoc). This approach, proposed by Aschermann [6], ensures an
unbiased comparison between coverage metrics. This is akin to the approach taken
by FUZZTASTIC [127], which uses additional instrumentation to measure collision-
free block coverage in parallel with the fuzzer (rather than examining the queue post
hoc).

1The highlight color reflects the plot colors.



7.3. Evaluation 101

Figure 7.1a echoes the approach used by FUZZBENCH [144], where we replayed SAFL

and Sctx through Psrc instrumented with Clang’s source-based coverage (operating
on the Clang AST and preprocessor) [209]. FUZZBENCH uses Clang’s source-based
coverage as an independent code coverage metric to enable comparisons across
fuzzers. While this approach removes bias toward a particular coverage metric, it
also means differences between metrics—and their implementations—are lost (e.g.,
when comparing coverage achieved by fuzzers using more fine-grained metrics).

This “information loss” is evident in Fig. 7.1: viewed through the PAFL and Psrc PoV
(Figs. 7.1a and 7.1b , respectively), the coverage achieved across the two campaigns
appears identical. However, the Pctx PoV (Fig. 7.1c ) clearly shows that fuzzing Pctx

explores more of P’s state space (due to context sensitivity). How, then, should we make
cross-fuzzer coverage comparisons? The remainder of this chapter answers this question.

7.3 Evaluation

Our evaluation aims to answer the following research questions:

RQ 1 How do the coverage expansion capabilities of different control- and data-flow-
based metrics compare? (Section 7.3.2)

RQ 2 Can coverage metrics be combined to complement each other, to uncover new
states in the target’s state space (and thus share this information with other
fuzzers—in an ensemble configuration—to improve their state space search)?
(Section 7.3.3)

7.3.1 Methodology

Fuzzer Selection

We evaluate the 15 coverage metrics listed in Table 7.1. These coverage metrics span
the full range of coverage metrics discussed throughout this dissertation. All 15 are
(re)implemented as LLVM (v14) passes in AFL++ (commit 7101192). The (context-
sensitive) edge metrics (Ecoarse, ELTO, ESANCOV, E1-ctx, E2-ctx, and E3-ctx) are described
in Sections 3.2.2 and 3.2.4. The data dependency graph (DDG) (EDDG), memory
accesses (EMA), and n-gram paths metrics (P2-gram, P4-gram, and P8-gram) are described
in Sections 3.2.3, 3.2.5 and 3.2.7, respectively. Finally, def -use chain coverage (DFA+S/A,
DFA+S/O, and DFA+S/V) is described in Chapter 5. We ported EMA from its original
QEMU-based implementation [214] to operate on the LLVM intermediate represen-
tation (IR). EDDG uses DDFuzz’s implementation of the DDG [141], while DFA+S/A,
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TABLE 7.1: Evaluated fuzzers and their coverage metrics. B has no C,
while ELTO, and ESANCOV uses a variable-sized C.

Fuzzer Description Map size (KiB)

B Blackbox −
Ecoarse Coarse-grain probabilistic edge 64
ELTO Link-time optimization (LTO) edge −
ESANCOV SANCOV LTO fine-grain edge −
E1-ctx Edge ⊕ calling context (k = 1) 64
E2-ctx Edge ⊕ calling context (k = 2) 64
E3-ctx Edge ⊕ calling context (k = 3) 64
EDDG Edge ⊕ DDG 64
EMA Edge ⊕memory accesses (reads + writes) 128
P2-gram Path. 2-gram edge 64
P4-gram Path. 4-gram edge 64
P8-gram Path. 8-gram edge 64
DFA+S/A Def -use chain. Array and struct def ⊕ access use sites 1,024
DFA+S/O Def -use chain. Array and struct def ⊕ access use offsets 1,024
DFA+S/V Def -use chain. Array and struct def ⊕ accessed value use sites 1,024

DFA+S/O, and DFA+S/V use DATAFLOW’s implementation of def -use chain cover-
age [90]. The other fuzzers listed in Table 7.1 were already implemented in AFL++.
Using the same fuzzer (AFL++) and instrumentation framework (LLVM) ensures a
fair evaluation [118].

Target Selection

We ues the same configuration of FUZZBENCH [144] described in Section 6.3.1.

Experimental Setup

We run one fuzzing campaign per {target × coverage metric} combination. Each cam-
paign consists of ten independent 24 h trials (consistent with the recommendations
by Klees et al. [115]). This amounts to over 8 CPU-yr of fuzzing. All experiments
were carried out using the configuration described in Section 6.3.1. Additionally,
we modify FUZZBENCH to support our R&R approach (Section 7.2). R&R ensures:
(i) an unbiased comparison of coverage metrics, because inputs have not been re-
tained based on a specific coverage metric; (ii) differences between metrics (and their
implementations) are retained; and (iii) the sensitivity of metrics can be compared.

7.3.2 Comparison of Coverage Metrics (RQ 1)

We use our dynamic analysis (described in Section 6.2.2) to compare the coverage
expansion (and thus state space search) performance of different control- and data-
flow-based coverage metrics. Given the unreliability of our static analysis results



7.3. Evaluation 103

(Section 6.3), we do not quantify coverage with respect to a static interprocedural
control-flow graph (ICFG) (as we did in Section 5.5.4). Instead, Table 7.2 summa-
rizes the number of context (in)sensitive edges covered by AFL++ using the 15
coverage metrics listed in Table 7.1. The mean coverage over ten repeated 24 h tri-
als with 95 % CI is shown. We use the Mann-Whitney U-test [139] to statistically
compare coverage across fuzzers: two fuzzers cover the same number of context-
(in)sensitive edges if the Mann-Whitney U-test’s p-value > 0.05. We first compare
performance using context-insensitive edge coverage, before turning our attention to
context-sensitive edge coverage.

Context-Insensitive Edge Coverage

Context-insensitive edge coverage is the approach traditionally used to compare fuzzer
performance. We use this approach in Table 7.2a to summarize and compare the
aggregate coverage achieved by each coverage metric. Based on these results, ELTO

and ESANCOV were the best-performing metrics, achieving the most coverage on the
most targets. This echoes our result in Chapter 5. Here, both ELTO and ESANCOV

consistently outperformed the other edge metric (Ecoarse), reinforcing the importance
of eliminating hash collisions in the coverage map. Notably, ESANCOV’s higher run-
time cost (compared to ELTO) did not translate to better performance.

Similar to our results in Section 7.2, adding context sensitivity to coarse-grained
probabilistic edge coverage (E1-ctx, E2-ctx, and E3-ctx) failed to meaningfully improve
overall coverage. Notably, the performance of the context-sensitive edge coverage
metrics improved slightly (mean 4 % increase in edge coverage across all targets)
as the number of calling contexts increased (from k = 1 to k = 3). However, even
when k = 3, the two LTO edge metrics generally outperformed the context-sensitive
edge metrics. We attribute this to hash collisions in the coverage map, due to the large
number of context-sensitive edges in the target program (per the results in Table 6.4).

Approximating path coverage with n-gram coverage (P2-gram, P4-gram, and P8-gram)
produced similar results to context-sensitive edge coverage, with little statistically-
significant improvement over the two LTO edge metrics. Unlike the context-sensitive
edge metrics, average performance worsened as n increased (mean 10 % decrease in
edge coverage across all targets). Intuitively, we expected targets with fewer basic
blocks to perform better, because they would be less prone to hash collisions in the
coverage map. However, this intuition was not consistently borne out in our results.
While it may explain the coverage increase—as n increased—in zlib (the target with
the fewest number of basic blocks, per Table 6.1), it does not explain the results for
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TABLE 7.2: Context-(in)sensitive edge coverage achieved by each
fuzzer listed in Table 7.1 on FUZZBENCH. The mean over ten re-
peated 24 h trials with 95 % bootstrap CI is reported. The best perform-

ing fuzzer for each target is highlighted in green (larger is better).

(A) Context-insensitive edge coverage.

Target B Ecoarse E1-ctx E2-ctx E3-ctx ELTO ESANCOV EMA EDDG P2-gram P4-gram P8-gram DFA+S/A DFA+S/O DFA+S/V

5,271.00 7,221.60 7,317.67 7,580.30 7,532.80 7,650.40 7,733.30 5,370.70 7,853.50 7,102.10 7,313.20 5,617.80 5,351.10 4,680.70 5,787.40bloaty ± 253.35 ± 82.61 ± 81.11 ± 37.10 ± 63.10 ± 59.75 ± 90.25 ± 155.80 ± 57.15 ± 70.05 ± 53.55 ± 235.00 ± 244.71 ± 296.96 ± 212.70
9,294.90 14,050.20 14,217.80 14,253.20 14,328.70 14,195.80 14,186.80 11,762.10 14,275.80 14,069.40 14,359.20 13,706.60 9,641.00 7,095.20 9,929.60curl ± 578.66 ± 52.05 ± 77.50 ± 60.75 ± 50.75 ± 53.90 ± 48.70 ± 49.05 ± 64.40 ± 99.55 ± 40.55 ± 36.55 ± 649.60 ± 794.52 ± 685.03
6,212.50 9,825.90 9,789.20 9,725.70 9,811.90 11,674.30 11,721.60 6,463.50 10,343.00 9,760.30 9,926.20 9,253.00 6,375.50 6,023.50 6,606.80freetype2 ± 53.35 ± 55.30 ± 67.45 ± 66.15 ± 51.55 ± 177.10 ± 80.00 ± 87.85 ± 36.15 ± 41.45 ± 36.95 ± 82.85 ± 40.70 ± 74.30 ± 39.90

22,877.00 47,750.60 43,029.70 44,572.40 45,808.80 49,153.50 49,252.00 32,619.10 48,644.00 47,850.70 47,031.90 40,874.60 25,176.30 21,330.80 21,114.80harfbuzz ± 2,546.79 ± 306.01 ± 434.36 ± 3,609.96 ± 253.80 ± 154.15 ± 165.20 ± 915.91 ± 195.66 ± 202.85 ± 297.41 ± 776.97 ± 2,297.66 ± 2,721.77 ± 1,891.92
589.10 899.40 900.40 899.80 900.60 902.80 901.70 677.60 899.67 900.00 901.00 877.11 604.30 566.20 635.60jsoncpp ± 10.50 ± 0.70 ± 0.55 ± 0.60 ± 0.50 ± 0.25 ± 0.85 ± 8.80 ± 0.89 ± 1.20 ± 0.00 ± 3.56 ± 7.20 ± 23.85 ± 6.75
474.50 1,282.50 1,299.70 1,318.90 1,577.60 1,403.90 1,262.60 812.40 1,421.30 1,369.50 1,119.10 1,159.30 463.20 232.70 644.60lcms ± 177.45 ± 193.66 ± 187.40 ± 211.15 ± 260.00 ± 226.05 ± 189.75 ± 38.00 ± 201.86 ± 260.00 ± 25.05 ± 187.05 ± 162.60 ± 135.35 ± 102.25

2,024.20 2,434.20 2,437.70 2,436.60 2,437.70 2,436.20 2,435.40 2,170.20 2,437.50 2,434.80 2,439.50 2,432.50 2,064.70 1,975.80 2,098.80libpng ± 7.10 ± 1.50 ± 0.95 ± 1.20 ± 0.50 ± 1.80 ± 1.60 ± 18.40 ± 1.50 ± 1.95 ± 0.60 ± 2.50 ± 9.80 ± 36.70 ± 14.70
6,225.10 12,470.90 8,749.80 12,588.90 12,588.90 12,789.20 12,724.50 9,106.10 12,985.00 12,596.30 12,823.60 11,599.30 6,915.50 5,970.60 7,608.40libxslt ± 85.10 ± 128.70 ± 139.51 ± 366.46 ± 366.46 ± 171.96 ± 112.35 ± 105.55 ± 100.00 ± 98.40 ± 104.45 ± 312.81 ± 191.95 ± 273.76 ± 113.80
3,146.50 3,622.30 3,613.80 3,609.90 3,648.10 3,680.00 3,664.30 3,183.80 3,773.80 3,604.70 3,646.70 3,473.10 3,208.40 3,112.00 3,250.30mbedtls ± 10.75 ± 16.50 ± 25.20 ± 24.85 ± 19.55 ± 28.30 ± 31.45 ± 12.50 ± 195.20 ± 20.10 ± 22.20 ± 30.55 ± 20.90 ± 27.05 ± 16.60

11,368.67 11,501.22 11,408.30 11,525.30 11,493.60 11,730.60 11,674.10 10,817.00 11,663.20 11,588.30 11,408.30 10,086.70 10,848.20 10,606.60 10,962.80openh264 ± 33.44 ± 50.50 ± 121.05 ± 62.15 ± 33.30 ± 31.85 ± 51.60 ± 72.30 ± 33.20 ± 31.90 ± 67.50 ± 304.06 ± 45.00 ± 100.00 ± 38.35
8,393.90 9,832.10 9,900.80 9,917.60 9,984.40 9,939.60 9,944.00 8,570.30 9,974.10 9,874.20 9,993.90 9,905.20 8,776.22 8,276.60 9,282.70openssl ± 101.80 ± 43.15 ± 45.40 ± 31.85 ± 30.90 ± 23.35 ± 23.95 ± 123.65 ± 42.30 ± 19.70 ± 32.95 ± 41.90 ± 100.50 ± 241.50 ± 83.90
9,578.00 10,589.50 10,620.50 10,595.30 10,599.30 10,605.50 10,599.00 9,587.20 10,625.70 10,586.80 10,684.00 10,900.80 9,578.00 9,578.00 9,578.00openthread ± 0.00 ± 5.35 ± 46.25 ± 5.35 ± 5.10 ± 4.65 ± 4.85 ± 13.80 ± 46.60 ± 5.10 ± 86.20 ± 84.30 ± 0.00 ± 0.00 ± 0.00
2,928.70 4,400.20 4,402.30 4,402.40 4,408.70 4,417.50 4,416.50 3,500.80 4,421.56 4,401.80 4,417.30 4,392.00 3,156.50 2,795.80 3,235.90re2 ± 53.65 ± 14.85 ± 16.20 ± 13.95 ± 16.10 ± 13.25 ± 14.00 ± 30.15 ± 15.06 ± 17.05 ± 15.55 ± 17.65 ± 36.75 ± 104.15 ± 43.40

13,258.80 22,948.70 19,798.20 22,503.70 22,129.10 24,582.20 24,049.20 11,456.00 24,868.30 22,988.20 22,767.10 18,184.40 13,006.80 12,378.80 14,094.60sqlite3 ± 70.45 ± 503.68 ± 276.95 ± 429.10 ± 305.15 ± 489.52 ± 640.90 ± 621.80 ± 610.33 ± 411.30 ± 590.81 ± 125.85 ± 667.16 ± 712.71 ± 261.20
1,915.10 2,240.70 2,238.60 2,242.00 2,252.10 2,263.90 2,264.30 2,016.20 2,269.89 2,247.20 2,234.70 2,182.10 1,954.30 1,819.30 2,016.80stb ± 17.60 ± 7.35 ± 8.30 ± 6.70 ± 9.25 ± 7.65 ± 8.15 ± 15.45 ± 7.06 ± 8.10 ± 7.45 ± 9.75 ± 20.45 ± 36.85 ± 8.75
1,379.00 1,711.60 1,707.50 1,711.70 1,714.20 1,715.50 1,716.20 1,384.60 1,712.50 1,711.00 1,713.70 1,714.50 1,424.20 1,364.20 1,392.70vorbis ± 35.35 ± 1.80 ± 6.30 ± 0.65 ± 1.20 ± 0.80 ± 1.05 ± 26.10 ± 0.70 ± 1.25 ± 2.20 ± 0.95 ± 39.60 ± 40.80 ± 20.65
1,648.10 2,254.10 2,280.80 2,241.50 2,288.20 2,286.60 2,275.70 1,921.70 2,274.90 2,229.10 2,303.50 2,246.70 1,688.90 1,614.70 1,748.20woff2 ± 13.30 ± 17.65 ± 13.10 ± 33.80 ± 11.40 ± 20.30 ± 26.75 ± 6.40 ± 32.70 ± 26.80 ± 15.05 ± 17.05 ± 19.15 ± 36.45 ± 16.80

143.00 530.10 528.30 531.00 532.60 528.80 531.50 483.90 528.20 530.10 532.30 537.80 165.70 157.70 191.70zlib ± 10.05 ± 3.55 ± 2.60 ± 3.85 ± 3.10 ± 3.60 ± 2.85 ± 3.55 ± 3.70 ± 3.65 ± 5.40 ± 4.35 ± 13.85 ± 18.70 ± 20.90

(B) Context-sensitive edge coverage.

Target B Ecoarse E1-ctx E2-ctx E3-ctx ELTO ESANCOV EMA EDDG P2-gram P4-gram P8-gram DFA+S/A DFA+S/O DFA+S/V

12,515.40 16,826.30 19,283.67 19,326.00 19,954.60 18,271.70 19,187.10 12,306.70 20,725.30 16,034.30 17,637.80 12,768.60 12,395.00 11,231.70 13,425.70bloaty ± 430.80 ± 816.81 ± 1,048.35 ± 1,023.07 ± 852.96 ± 554.20 ± 991.70 ± 518.40 ± 979.16 ± 308.70 ± 715.11 ± 514.56 ± 403.40 ± 541.91 ± 516.45
14,768.50 22,481.20 22,793.90 22,817.50 22,870.80 22,456.50 22,858.70 18,645.70 22,862.20 22,448.40 22,652.10 21,913.20 15,308.00 11,107.00 15,789.00curl ± 1,044.56 ± 241.30 ± 329.01 ± 202.65 ± 263.95 ± 229.00 ± 130.46 ± 142.61 ± 174.55 ± 267.70 ± 288.81 ± 193.91 ± 1,077.06 ± 1,282.82 ± 1,162.02
14,495.60 41,204.50 42,689.00 40,659.20 43,840.20 52,281.90 58,090.30 15,226.00 43,522.30 37,455.30 40,851.20 31,830.10 15,889.00 14,466.50 15,915.00freetype2 ± 421.11 ± 3,652.56 ± 3,584.67 ± 2,144.93 ± 3,863.51 ± 8,342.98 ± 11,348.50 ± 1,585.02 ± 3,653.18 ± 2,213.51 ± 3,270.42 ± 3,511.56 ± 1,239.77 ± 631.51 ± 1,238.70
54,220.00 144,539.10 131,348.70 130,894.20 140,415.30 149,048.00 149,926.20 80,868.90 147,619.70 140,706.50 140,851.40 109,356.50 59,640.30 48,588.10 47,840.60harfbuzz ± 7,832.88 ± 2,610.92 ± 2,512.26 ± 14,959.24 ± 1,820.59 ± 2,103.51 ± 1,794.35 ± 2,446.32 ± 1,213.20 ± 3,516.80 ± 1,828.26 ± 3,980.79 ± 6,966.79 ± 8,351.96 ± 5,316.62

1,037.50 1,778.40 1,758.90 1,789.00 1,805.90 1,769.90 1,752.80 1,239.80 1,798.33 1,791.80 1,816.10 1,725.78 1,081.00 979.80 1,160.10jsoncpp ± 42.05 ± 54.15 ± 38.00 ± 35.60 ± 71.45 ± 52.00 ± 36.30 ± 34.45 ± 84.33 ± 63.60 ± 60.02 ± 46.33 ± 24.40 ± 41.20 ± 45.45
744.90 2,481.30 2,457.60 2,464.30 3,272.70 2,725.90 2,402.00 1,385.80 2,751.10 2,704.40 1,965.20 2,148.20 724.90 339.70 1,040.80lcms ± 310.55 ± 599.76 ± 552.60 ± 593.40 ± 764.95 ± 637.51 ± 569.12 ± 118.80 ± 630.36 ± 736.51 ± 45.75 ± 459.15 ± 274.25 ± 227.00 ± 175.95

3,158.30 3,649.50 3,691.20 3,671.80 3,661.40 3,619.90 3,675.10 3,238.50 3,659.30 3,649.10 3,688.00 3,662.40 3,135.30 3,076.20 3,233.20libpng ± 70.20 ± 57.40 ± 47.20 ± 65.80 ± 62.60 ± 68.15 ± 50.65 ± 46.00 ± 43.85 ± 52.70 ± 63.10 ± 59.60 ± 74.01 ± 55.40 ± 67.55
13,688.40 37,747.60 23,815.90 37,741.00 37,741.00 39,278.30 40,586.20 23,767.40 39,581.00 38,313.00 39,288.00 34,649.50 16,228.10 13,030.30 18,570.30libxslt ± 346.90 ± 533.61 ± 484.61 ± 1,781.63 ± 1,781.63 ± 647.87 ± 2,045.31 ± 258.51 ± 250.00 ± 381.20 ± 295.00 ± 1,612.58 ± 744.81 ± 976.98 ± 499.31

5,093.00 5,775.30 5,735.10 5,685.60 5,758.80 5,865.60 5,866.00 5,128.30 6,225.90 5,654.40 5,909.40 5,552.10 5,145.40 5,005.20 5,236.80mbedtls ± 48.65 ± 46.90 ± 58.40 ± 77.85 ± 69.05 ± 114.10 ± 80.80 ± 40.30 ± 670.75 ± 64.30 ± 214.50 ± 80.70 ± 50.20 ± 61.05 ± 58.25
15,181.00 15,381.00 15,334.10 15,433.10 15,305.70 15,704.30 15,610.40 14,658.90 15,581.40 15,493.10 15,297.20 13,757.20 14,641.60 14,367.90 14,804.30openh264 ± 71.61 ± 65.95 ± 139.65 ± 121.80 ± 31.85 ± 74.40 ± 94.40 ± 115.60 ± 63.75 ± 76.50 ± 117.05 ± 389.90 ± 101.90 ± 143.80 ± 79.70
57,944.40 73,358.00 75,393.10 77,816.90 78,926.90 74,206.70 75,264.00 63,186.90 76,192.40 75,260.90 75,926.40 77,574.90 62,945.11 60,613.60 70,405.20openssl ± 4,550.31 ± 1,103.77 ± 2,290.17 ± 2,843.81 ± 2,855.50 ± 1,746.47 ± 2,014.01 ± 4,820.97 ± 2,435.92 ± 1,886.64 ± 1,945.57 ± 3,170.08 ± 5,844.85 ± 6,141.26 ± 3,161.29
15,734.80 18,984.50 19,079.20 18,973.50 19,000.60 19,076.30 19,009.90 15,888.70 19,018.80 19,136.50 19,200.90 19,417.10 15,747.80 15,769.80 15,696.10openthread ± 52.05 ± 48.95 ± 86.25 ± 75.10 ± 74.00 ± 60.15 ± 80.10 ± 217.11 ± 88.35 ± 95.30 ± 125.50 ± 141.56 ± 94.20 ± 72.80 ± 84.65

3,878.40 6,749.60 6,751.20 6,751.20 6,778.20 6,773.50 6,806.80 5,388.10 6,789.56 6,744.30 6,802.80 6,735.40 4,435.70 3,614.90 4,587.40re2 ± 129.40 ± 34.70 ± 49.90 ± 47.50 ± 30.05 ± 20.65 ± 29.85 ± 50.60 ± 31.50 ± 43.75 ± 28.75 ± 43.90 ± 140.30 ± 229.90 ± 138.30
85,343.10 304,982.50 258,641.40 315,294.70 293,307.30 333,631.30 349,276.10 97,799.40 323,894.70 299,908.10 319,245.90 229,712.20 93,745.20 76,701.40 110,089.80sqlite3 ± 14,102.80 ± 22,719.52 ± 9,111.55 ± 24,699.64 ± 14,325.18 ± 22,847.24 ± 17,181.11 ± 11,073.08 ± 23,675.76 ± 24,424.82 ± 22,450.66 ± 11,425.58 ± 15,078.69 ± 12,163.11 ± 15,008.93

2,906.30 3,343.60 3,347.40 3,349.60 3,361.80 3,372.80 3,372.40 3,049.80 3,380.44 3,357.50 3,341.70 3,253.20 2,956.70 2,776.10 3,042.40stb ± 22.15 ± 12.25 ± 6.70 ± 7.35 ± 11.70 ± 10.55 ± 12.80 ± 20.50 ± 10.39 ± 7.70 ± 8.10 ± 16.20 ± 23.65 ± 45.85 ± 8.35
1,831.20 2,408.90 2,429.90 2,478.60 2,468.50 2,457.40 2,430.90 1,835.40 2,440.30 2,426.40 2,455.20 2,423.00 1,914.70 1,803.80 1,851.60vorbis ± 63.40 ± 45.90 ± 42.10 ± 16.70 ± 27.80 ± 27.70 ± 40.90 ± 52.25 ± 44.05 ± 46.95 ± 31.90 ± 45.05 ± 68.15 ± 69.65 ± 42.15
1,735.00 2,363.60 2,391.00 2,351.90 2,398.60 2,400.90 2,397.40 2,026.10 2,385.50 2,338.80 2,413.70 2,356.90 1,783.60 1,701.00 1,849.50woff2 ± 15.10 ± 17.65 ± 13.20 ± 33.35 ± 11.45 ± 22.50 ± 30.95 ± 6.65 ± 33.00 ± 26.50 ± 14.80 ± 17.15 ± 20.10 ± 41.55 ± 16.50

150.00 537.10 535.30 538.00 539.60 535.80 538.50 490.90 535.20 537.10 539.30 544.80 172.70 164.70 198.70zlib ± 9.85 ± 3.65 ± 2.65 ± 3.75 ± 3.15 ± 3.60 ± 2.90 ± 3.50 ± 3.70 ± 3.50 ± 5.40 ± 4.40 ± 13.65 ± 18.60 ± 21.05
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other targets (e.g., P8-gram was the best performer on openthread, despite it having a
higher-than-average basic block count).

The EMA and EDDG metrics both attempt to incorporate data flow information with
traditional edge coverage techniques. The approach used by EMA—to xor memory
accesses with coarse-grained probabilistic edge coverage—is the less effective of
the two metrics. The large number of instrumented memory accesses significantly
(a) reduces AFL++’s iteration rate, and (b) increases the size of the fuzzer’s queue,
resulting in queue explosion and making it harder for the fuzzer’s scheduler to select
a suitable seed to fuzz. Ultimately, this makes EMA one of the worst-performing
metrics. In contrast, EDDG—which combines a DDG with coarse-grained probabilistic
edge coverage—was the (equal) second-best-performing metric, achieving the (equal)
highest coverage on ten targets. Unlike EMA, EDDG optimizes the inclusion of data
flow information, minimizing run-time overheads and increasing coverage expansion.
The EDDG results reinforce one of our key findings from Section 5.5.3: fuzzers guided
by control flow and data flow should be combined to maximize fuzzing outcomes.

Unsurprisingly, the worst results occurred when no coverage feedback was used
(B). In extreme cases (e.g., harfbuzz, lcms), this resulted in half the coverage achieved
by the control-flow-based metrics. However, to our dismay, def -use chain coverage
(DFA+S/A, DFA+S/O, and DFA+S/V) performed only marginally better than no coverage
at all. Similar to our results in Section 5.5, DFA+S/O was the worst-performing of the
three def -use chain metrics. Despite DFA+S/V’s increased sensitivity (per Section 5.3.1),
there was no statistically significant improvement over DFA+S/A. Again, the run-
time overheads associated with tracking def -use chains had a significant impact on
performance.

Finding

Context-insensitive edge coverage is the traditional approach for measuring and
comparing fuzzers’ state space search. Based on this approach, ELTO and ESANCOV

were the best-performing coverage metrics. We attribute this result to their
(a) low run-time overhead (leading to faster iteration rates), and (b) lack of hash
collisions in the coverage map.

Context-Sensitive Edge Coverage

Section 6.2.1 introduced our approach for measuring context-sensitive control-flow
coverage. Such an approach is important for uniquely identifying execution points.
Similar to Table 7.2a, Table 7.2b summarizes aggregate coverage. Importantly, the
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previous context-insensitive results are reflected here, with ELTO, ESANCOV, and EDDG

once again the best performers, achieving the highest coverage on the most targets.
However, many of the other metrics—in particular, E1-ctx, E2-ctx, E3-ctx, and P2-gram—
appeared to perform better when accounting for context sensitivity.

Following the results in Section 7.2 (particularly in Fig. 7.1), the improvements
made by the context-sensitive edge and n-gram coverage metrics are not surprising.
While n-gram coverage does not explicitly incorporate calling context, recording
the previous n basic blocks implictly captures calling context at function call (and
return) sites. Once again, B, EMA, DFA+S/A, DFA+S/O, and DFA+S/V were the worst
performers.

Given our results, it is intuitive to assume that “the best performing metric is the
one used to compare metrics”. For example, when comparing fuzzers’ ability to
expand edge coverage, the best performers used traditional edge coverage as their
coverage metric (Section 7.3.2). Similarly, when comparing fuzzers’ ability to expand
context-sensitive edge coverage, the best performers incorporated context sensitivity
in their coverage metric. However, our previous results in Chapter 5 caution against
such thinking. In Section 5.5.4, edge coverage outperformed data-flow coverage
when comparing performance using a data-flow-based metric (in this case, def -use
chains). If anything, our results here and in Chapter 5 lead us to conclude that “the
best performing metric is one based on control-flow”.

Finding

Our context-sensitive results largely mirror our context-insensitive results: tradi-
tional edge coverage (as implemented in ELTO and ESANCOV) is the best-performing
coverage metric. While adding context sensitivity is important for uniquely
identifying execution points in a target, this ability is not strictly required when
comparing fuzzer performance (based on coverage expansion). However, it may
still be useful in other circumstances (e.g., to understand fuzz blockers).

7.3.3 Complementary Metrics (RQ 2)

Güler et al. [78] introduced CUPID, a system for automatically identifying fuzzers
that complement each other when executed collaboratively in an ensemble config-
uration. CUPID is based on the intuition that fuzzers covering different parts of a
target’s state space should benefit from sharing their progress with other fuzzers.
Importantly, CUPID is not simply based on which individual fuzzers achieve the
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“best” coverage. Instead, CUPID “measures the degree in which multiple fuzzers are
complementary. . . [computing] the union of the expected mean code coverage”.

We adopt CUPID’s approach to understand how well the 15 coverage metrics in
Table 7.1 complement each other, and how much (or little) their state space search
overlaps. To do this, we compute a probability map of how often a fuzzer was able to
cover each control-flow graph (CFG) edge in a 24 h campaign (across ten independent
trials). Using this probability map, we can understand (a) which coverage metrics
uncover program states that other metrics do not, and (b) which coverage metrics
may benefit from an ensemble fuzzing configuration.

Figures 7.2 and 7.3 illustrate the probability maps for context-insensitive and context-
sensitive CFG edges (respectively) in lcms, while Fig. 7.4 illustrates the probability
maps for context-insensitive CFG edges in sqlite3 (the context-sensitive version con-
tains too many edges to visualize).2 Each cell represents a single edge in the context-
insensitive CFG, while the color of a cell represents the probability of covering that
edge: darker cells correspond to high probabilities. While it is difficult to discern
the differences in individual edges (especially as the number of edges increases,
becoming even more pronounced when context sensitivity is taken into account),
these illustrations help visualize high-level differences across the 15 coverage metrics.
In particular, the number of red cells in Figs. 7.2 and 7.3 reinforces the (relative) poor
performance of B, EMA, DFA+S/A, DFA+S/O, and DFA+S/V.

We use these probability maps to determine how much a given coverage metric
complements another (when combined in an ensemble fuzzing configuration). As
described by Güler et al. [78], the combined probability of a set of fuzzers F covering
a given CFG edge is calculated as

PF (e) = 1− ∏
f∈F

(
1− Pf (e)

)
, (7.1)

where F is the set of fuzzers, e is the CFG edge the combined probability is being
calculated for, and Pf is the probability of fuzzer f covering edge e.

Using Eq. (7.1), the sum of all edge probabilities can be calculated to determine how
well the fuzzers in F complement each other. This is calculated as

EF = ∑
e∈E

PF (e), (7.2)

2We select these targets for illustration because they displayed the highest variance across coverage
metrics in Tables 7.2a and 7.2b.
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(A ) B. (B ) Ecoarse. (C ) E1-ctx. (D ) E2-ctx.

(E ) E3-ctx. (F ) ELTO. (G ) ESANCOV. (H ) EMA.

(I ) DDFuzz. (J ) P2-gram. (K ) P4-gram. (L ) P8-gram.

(M ) DFA+S/A. (N ) DFA+S/O. (O ) DFA+S/V.

FIGURE 7.2: Probability maps for lcms. Each cell represents a single
edge in the context-insensitive CFG. The color of a cell represents the
probability that this edge will be covered by the given coverage metric

(red is probability = 0, blue is probability = 1).
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(A ) B. (B ) Ecoarse. (C ) E1-ctx. (D ) E2-ctx.

(E ) E3-ctx. (F ) ELTO. (G ) ESANCOV. (H ) EMA.

(I ) DDFuzz. (J ) P2-gram. (K ) P4-gram. (L ) P8-gram.

(M ) DFA+S/A. (N ) DFA+S/O. (O ) DFA+S/V.

FIGURE 7.3: Probability maps for lcms. Each cell represents a single
edge in the context-sensitive CFG. The color of a cell represents the
probability that this edge will be covered by the given coverage metric

(red is probability = 0, blue is probability = 1).
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(A ) B. (B ) Ecoarse. (C ) E1-ctx. (D ) E2-ctx.

(E ) E3-ctx. (F ) ELTO. (G ) ESANCOV. (H ) EMA.

(I ) DDFuzz. (J ) P2-gram. (K ) P4-gram. (L ) P8-gram.

(M ) DFA+S/A. (N ) DFA+S/O. (O ) DFA+S/V.

FIGURE 7.4: Probability maps for sqlite3. Each cell represents a single
edge in the context-insensitive CFG. The color of a cell represents the
probability that this edge will be covered by the given coverage metric

(red is probability = 0, red is probability = 1).



7.4. Comparison to Previous Studies 111

where E is the set of all CFG edges in a target. Equation (7.2) represents the expected
number of edges that would be covered by the set of fuzzers F .

Figure 7.5 shows the predicted improvements in context-(in)sensitive CFG edge cov-
erage when pairing coverage metrics. These improvements are based on the coverage
results in Tables 7.2a and 7.2b. Each heatmap shows the predicted improvements for
a single target, where each cell contains (a) the expected number of covered edges
(per Eq. (7.2)), and (b) the percentage increase over only using a single coverage
metric. The colors reflect the relative performance of the coverage metric: red is worst
performance, blue is best performance.

These heatmaps make it clear—across a majority of targets—that accurate edge
coverage metrics (ELTO and ESANCOV) are superior to all other coverage metrics when
maximizing context-insensitive coverage. In particular, these metrics benefitted little
when combined with any of the other 13 metrics (only up to ∼3.5 %). The exceptions
to this result were mbedtls, sqlite3, and stb, which were predicted to improve their
coverage by 4 %, 10 %, and 11 %, respectively. Interestingly, these improvements
occurred when EDDG was incorporated, suggesting that incorporating some form of
data-flow-based coverage may yield small improvements to overall coverage.

These results generally hold when considering context-sensitive coverage. While ELTO

and ESANCOV continue to dominate, the performance gains are much larger (e.g., up
to 61 % on libpng) and occur when pairing with a wider range of coverage metrics
(e.g., context-sensitive edge coverage and n-gram coverage).

Finding

The best-performing coverage metrics—ELTO and ESANCOV—were predicted to
benefit little when combined with other coverage metrics. When performance
was predicted to improve, it was generally when EDDG was incorporated, sug-
gesting that some form of data-flow-based coverage may yield small improve-
ments to overall coverage.

7.4 Comparison to Previous Studies

Salls et al. [183] and Wang et al. [214] have also conducted studies on the performance
of fuzzer coverage metrics. However, these studies: (i) did not take into account
data-flow-based metrics; (ii) used a smaller set of “real-world” targets; and (iii) did
not compare fuzzers based on coverage (instead focusing on counting crashes in
synthetic benchmarks such as the Cyber Grand Challenge (CGC) and LAVA-M).
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(B ) bloaty (context-sensitive).

FIGURE 7.5: The predicted improvements to ICFG control-flow cov-
erage. These improvements are made by pairing the fuzzer on the
y-axis with the fuzzer on the x-axis. Each cell contains the expected
number of covered edges and the percentage increase over only using
the fuzzer on the y-axis (in brackets). The highest expected coverage
is highlighted, while the cell color reflects the relative performance of

the fuzzer: red is worst performance, blue is best performance.
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37167
(38.38)

37807
(40.76)

37187
(38.45)

38869
(44.71)

36154
(34.61)

28536
(6.25)

36944
(37.55)

37378
(39.17)

37911
(41.15)

37281
(38.80)

35425
(31.89)

36716
(2.62)

36872
(3.06)

36995
(3.40)

36802
(2.86)

39152
(9.43)

39549
(10.54)

39143
(9.41)

40445
(13.04)

38384
(7.28)

36944
(3.26)

38734
(8.26)

39397
(10.12)

39782
(11.19)

39167
(9.47)

38241
(6.89)

37187
(2.43)

37316
(2.79)

37465
(3.20)

37260
(2.63)

39506
(8.82)

39846
(9.76)

39432
(8.62)

40643
(11.95)

38863
(7.05)

37378
(2.96)

39397
(8.52)

39389
(8.50)

40001
(10.18)

39475
(8.73)

38600
(6.32)

37742
(2.61)

37902
(3.04)

38018
(3.36)

37828
(2.84)

39816
(8.25)

40039
(8.85)

39811
(8.23)

40827
(10.99)

39340
(6.95)

37911
(3.07)

39782
(8.15)

40001
(8.75)

40002
(8.75)

39852
(8.34)

39118
(6.35)

37024
(2.65)

37181
(3.08)

37277
(3.35)

37157
(3.02)

39079
(8.35)

39480
(9.46)

38917
(7.90)

40488
(12.25)

38591
(6.99)

37281
(3.36)

39167
(8.59)

39475
(9.44)

39852
(10.49)

38707
(7.32)

38628
(7.10)

35136
(2.62)

35292
(3.08)

35402
(3.40)

35212
(2.84)

38536
(12.55)

38990
(13.88)

38527
(12.53)

39890
(16.51)

37645
(9.95)

35425
(3.47)

38241
(11.69)

38600
(12.74)

39118
(14.25)

38628
(12.82)

36874
(7.70)

(D ) curl (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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(E ) freetype2 (context-insensitive).
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51774
(82.89)

29224
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30629
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29405
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30120
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30249
(2.82)

30261
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31415
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31146
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(7.95)
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59183
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(1.80)

62887
(7.81)
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(13.90)

59002
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(1.34)

58772
(0.76)

28941
(2.79)

29119
(3.42)
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29187
(3.54)

29173
(3.49)

29403
(4.31)

30724
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30505
(8.21)
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(11.21)
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(13.45)

51884
(84.06)

29206
(3.61)

59110
(109.69)

30584
(8.50)

29920
(6.14)

30213
(7.18)

29229
(3.69)

25853
(3.57)

26117
(4.62)

26084
(4.49)

26490
(6.12)

29661
(18.82)

29405
(17.79)

30400
(21.78)

31185
(24.92)

51457
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58772
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(17.30)

28292
(13.34)
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(17.09)

26556
(6.38)

(F ) freetype2 (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).



7.4. Comparison to Previous Studies 117

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

625
(32.84)

615
(30.74)

516
(9.79)

698
(48.43)

1342
(185.29)

1362
(189.52)

1629
(246.32)

1468
(212.12)

1451
(208.46)

827
(75.73)

1302
(176.76)

1322
(180.95)

1413
(200.32)

1159
(146.36)

1195
(154.04)

615
(33.00)

598
(29.22)

505
(9.13)

684
(47.82)

1342
(190.22)

1362
(194.53)

1629
(252.31)

1468
(217.52)

1451
(213.80)

820
(77.40)

1302
(181.55)

1322
(185.81)

1413
(205.51)

1159
(150.63)

1195
(158.43)

516
(124.34)

505
(119.21)

319
(38.69)

654
(184.19)

1342
(482.97)

1362
(491.62)

1629
(607.69)

1468
(537.79)

1451
(530.32)

819
(255.86)

1302
(465.55)

1322
(474.11)

1413
(513.68)

1159
(403.43)

1195
(419.11)

698
(8.59)

684
(6.30)

654
(1.74)

719
(11.79)

1342
(108.71)

1362
(111.80)

1629
(153.36)

1468
(128.34)

1451
(125.66)

826
(28.43)

1302
(102.47)

1322
(105.54)

1413
(119.70)

1159
(80.23)

1195
(85.85)

1342
(0.00)

1342
(0.00)

1342
(0.00)

1342
(0.00)

1487
(10.79)

1511
(12.57)

1727
(28.66)

1582
(17.90)

1576
(17.45)

1342
(0.00)

1485
(10.63)

1489
(10.93)

1572
(17.14)

1367
(1.84)

1438
(7.14)

1362
(0.00)

1362
(0.00)

1362
(0.00)

1362
(0.00)

1511
(10.93)

1526
(12.03)

1744
(28.09)

1605
(17.82)

1596
(17.22)

1362
(0.00)

1507
(10.65)

1510
(10.85)

1590
(16.72)

1388
(1.95)

1455
(6.86)

1629
(0.00)

1629
(0.00)

1629
(0.00)

1629
(0.00)

1727
(5.98)

1744
(7.08)

1876
(15.15)

1784
(9.53)

1782
(9.39)

1629
(0.00)

1721
(5.66)

1726
(5.95)

1780
(9.27)

1648
(1.16)

1695
(4.05)

1468
(0.00)

1468
(0.00)

1468
(0.00)

1468
(0.00)

1582
(7.77)

1605
(9.29)

1784
(21.54)

1655
(12.70)

1656
(12.77)

1468
(0.00)

1580
(7.64)

1582
(7.73)

1659
(13.01)

1481
(0.89)

1545
(5.25)

1451
(0.00)

1451
(0.00)

1451
(0.00)

1451
(0.00)

1576
(8.63)

1596
(10.02)

1782
(22.81)

1656
(14.11)

1650
(13.70)

1451
(0.00)

1571
(8.30)

1576
(8.61)

1650
(13.72)

1470
(1.32)

1533
(5.68)

827
(0.91)

820
(0.13)

819
(0.00)

826
(0.81)

1342
(63.82)

1362
(66.25)

1629
(98.87)

1468
(79.23)

1451
(77.13)

860
(5.01)

1302
(58.94)

1322
(61.34)

1413
(72.46)

1159
(41.48)

1195
(45.89)

1302
(0.00)

1302
(0.00)

1302
(0.00)

1302
(0.00)

1485
(14.04)

1507
(15.75)

1721
(32.22)

1580
(21.39)

1571
(20.70)

1302
(0.01)

1472
(13.09)

1482
(13.81)

1562
(20.01)

1355
(4.09)

1421
(9.15)

1322
(0.00)

1322
(0.00)

1322
(0.00)

1322
(0.00)

1489
(12.64)

1510
(14.23)

1726
(30.60)

1582
(19.68)

1576
(19.24)

1322
(0.01)

1482
(12.11)

1485
(12.38)

1571
(18.85)

1365
(3.27)

1431
(8.27)

1413
(0.00)

1413
(0.00)

1413
(0.00)

1413
(0.00)

1572
(11.28)

1590
(12.52)

1780
(26.01)

1659
(17.44)

1650
(16.80)

1413
(0.01)

1562
(10.60)

1571
(11.18)

1633
(15.58)

1454
(2.91)

1515
(7.22)

1159
(0.00)

1159
(0.00)

1159
(0.00)

1159
(0.00)

1367
(17.93)

1388
(19.81)

1648
(42.21)

1481
(27.82)

1470
(26.86)

1159
(0.01)

1355
(16.94)

1365
(17.76)

1454
(25.45)

1202
(3.74)

1289
(11.25)

1195
(0.00)

1195
(0.00)

1195
(0.00)

1195
(0.00)

1438
(20.32)

1455
(21.78)

1695
(41.84)

1545
(29.31)

1533
(28.32)

1195
(0.01)

1421
(18.91)

1431
(19.74)

1515
(26.75)

1289
(7.89)

1349
(12.87)

(K ) lcms (context-insensitive).

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

1096
(36.59)

1073
(33.76)

891
(11.07)

1226
(52.71)

2939
(266.19)

2927
(264.71)

3751
(367.46)

3250
(305.00)

3240
(303.76)

1577
(96.55)

2872
(257.91)

2990
(272.57)

3148
(292.32)

2518
(213.73)

2552
(218.02)

1073
(37.17)

1034
(32.16)

864
(10.39)

1193
(52.46)

2941
(275.89)

2931
(274.58)

3753
(379.57)

3255
(315.92)

3243
(314.42)

1562
(99.64)

2876
(267.53)

2995
(282.71)

3150
(302.60)

2520
(222.08)

2556
(226.69)

891
(149.38)

864
(141.68)

525
(46.79)

1135
(217.70)

2933
(720.64)

2920
(717.09)

3746
(948.21)

3243
(807.40)

3235
(805.17)

1552
(334.12)

2865
(701.62)

2984
(734.91)

3144
(779.64)

2512
(602.91)

2546
(612.44)

1226
(10.34)

1193
(7.41)

1135
(2.23)

1259
(13.33)

2945
(165.18)

2935
(164.25)

3756
(238.18)

3259
(193.41)

3246
(192.26)

1579
(42.16)

2881
(159.36)

2997
(169.87)

3154
(183.92)

2524
(127.25)

2560
(130.48)

2939
(0.38)

2941
(0.47)

2933
(0.18)

2945
(0.60)

3338
(14.01)

3360
(14.78)

4028
(37.58)

3596
(22.83)

3580
(22.27)

2950
(0.76)

3355
(14.59)

3456
(18.06)

3562
(21.66)

3046
(4.04)

3191
(8.99)

2927
(0.44)

2931
(0.59)

2920
(0.22)

2935
(0.72)

3360
(15.32)

3347
(14.85)

4045
(38.83)

3609
(23.85)

3596
(23.39)

2939
(0.84)

3363
(15.40)

3464
(18.89)

3569
(22.47)

3055
(4.82)

3184
(9.27)

3751
(0.25)

3753
(0.28)

3746
(0.11)

3756
(0.37)

4028
(7.64)

4045
(8.10)

4476
(19.61)

4197
(12.16)

4185
(11.84)

3761
(0.51)

4036
(7.87)

4120
(10.09)

4173
(11.52)

3835
(2.48)

3931
(5.06)

3250
(0.43)

3255
(0.56)

3243
(0.21)

3259
(0.70)

3596
(11.12)

3609
(11.51)

4197
(29.69)

3787
(17.02)

3803
(17.50)

3265
(0.90)

3603
(11.33)

3694
(14.15)

3799
(17.39)

3344
(3.33)

3471
(7.25)

3240
(0.31)

3243
(0.39)

3235
(0.15)

3246
(0.50)

3580
(10.82)

3596
(11.31)

4185
(29.57)

3803
(17.73)

3770
(16.70)

3249
(0.57)

3591
(11.18)

3688
(14.18)

3777
(16.93)

3319
(2.75)

3457
(7.02)

1577
(2.04)

1562
(1.06)

1552
(0.37)

1579
(2.14)

2950
(90.83)

2939
(90.10)

3761
(143.32)

3265
(111.24)

3249
(110.16)

1714
(10.87)

2884
(86.57)

3006
(94.43)

3159
(104.39)

2528
(63.57)

2566
(65.98)

2872
(0.48)

2876
(0.61)

2865
(0.23)

2881
(0.78)

3355
(17.37)

3363
(17.64)

4036
(41.21)

3603
(26.05)

3591
(25.63)

2884
(0.89)

3334
(16.65)

3447
(20.59)

3569
(24.84)

3045
(6.52)

3170
(10.89)

2990
(0.40)

2995
(0.57)

2984
(0.21)

2997
(0.66)

3456
(16.07)

3464
(16.34)

4120
(38.34)

3694
(24.06)

3688
(23.86)

3006
(0.93)

3447
(15.76)

3530
(18.53)

3669
(23.21)

3152
(5.87)

3281
(10.20)

3148
(0.28)

3150
(0.35)

3144
(0.14)

3154
(0.45)

3562
(13.46)

3569
(13.68)

4173
(32.92)

3799
(21.01)

3777
(20.31)

3159
(0.64)

3569
(13.67)

3669
(16.86)

3722
(18.56)

3277
(4.39)

3404
(8.42)

2518
(0.43)

2520
(0.53)

2512
(0.21)

2524
(0.68)

3046
(21.50)

3055
(21.84)

3835
(52.96)

3344
(33.39)

3319
(32.39)

2528
(0.86)

3045
(21.45)

3152
(25.75)

3277
(30.73)

2652
(5.77)

2837
(13.16)

2552
(0.47)

2556
(0.64)

2546
(0.24)

2560
(0.78)

3191
(25.62)

3184
(25.35)

3931
(54.77)

3471
(36.64)

3457
(36.08)

2566
(1.00)

3170
(24.79)

3281
(29.18)

3404
(34.00)

2837
(11.68)

2935
(15.54)

(L ) lcms (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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(M ) libpng (context-insensitive).
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FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).
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(R ) mbedtls (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).



7.4. Comparison to Previous Studies 121

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

12379
(10.89)

12360
(10.72)

12322
(10.38)

12383
(10.92)

12663
(13.43)

12745
(14.16)

12708
(13.84)

12847
(15.08)

12915
(15.69)

12362
(10.74)

12862
(15.21)

12568
(12.58)

12800
(14.66)

12643
(13.26)

12298
(10.16)

12360
(4.98)

11963
(1.60)

11892
(1.00)

12062
(2.44)

12557
(6.64)

12674
(7.64)

12629
(7.26)

12810
(8.79)

12887
(9.45)

12001
(1.93)

12823
(8.91)

12547
(6.56)

12737
(8.17)

12542
(6.52)

11981
(1.75)

12322
(7.16)

11892
(3.43)

11734
(2.05)

11993
(4.30)

12530
(8.98)

12658
(10.09)

12610
(9.67)

12802
(11.34)

12883
(12.04)

11917
(3.64)

12816
(11.46)

12501
(8.72)

12721
(10.63)

12517
(8.86)

11823
(2.82)

12383
(3.89)

12062
(1.20)

11993
(0.62)

12091
(1.44)

12577
(5.52)

12689
(6.46)

12645
(6.09)

12818
(7.54)

12895
(8.19)

12076
(1.32)

12833
(7.67)

12578
(5.53)

12753
(7.00)

12566
(5.43)

12076
(1.32)

12663
(1.56)

12557
(0.70)

12530
(0.49)

12577
(0.87)

12694
(1.80)

12774
(2.45)

12741
(2.18)

12859
(3.13)

12921
(3.62)

12557
(0.71)

12876
(3.26)

12734
(2.13)

12814
(2.77)

12699
(1.84)

12521
(0.42)

12745
(1.06)

12674
(0.50)

12658
(0.37)

12689
(0.62)

12774
(1.29)

12802
(1.51)

12792
(1.43)

12884
(2.16)

12934
(2.55)

12677
(0.52)

12901
(2.29)

12794
(1.45)

12846
(1.86)

12760
(1.18)

12647
(0.28)

12708
(1.15)

12629
(0.52)

12610
(0.36)

12645
(0.65)

12741
(1.41)

12792
(1.81)

12740
(1.40)

12870
(2.43)

12928
(2.89)

12632
(0.54)

12886
(2.56)

12767
(1.62)

12829
(2.10)

12724
(1.27)

12600
(0.28)

12847
(0.46)

12810
(0.17)

12802
(0.11)

12818
(0.24)

12859
(0.56)

12884
(0.75)

12870
(0.64)

12899
(0.87)

12949
(1.26)

12811
(0.18)

12930
(1.11)

12866
(0.61)

12887
(0.78)

12850
(0.49)

12805
(0.13)

12915
(0.35)

12887
(0.13)

12883
(0.09)

12895
(0.19)

12921
(0.39)

12934
(0.49)

12928
(0.44)

12949
(0.61)

12959
(0.68)

12889
(0.14)

12957
(0.68)

12921
(0.39)

12936
(0.51)

12911
(0.32)

12883
(0.10)

12362
(5.05)

12001
(1.98)

11917
(1.26)

12076
(2.62)

12557
(6.70)

12677
(7.72)

12632
(7.34)

12811
(8.86)

12889
(9.52)

11968
(1.70)

12825
(8.98)

12550
(6.64)

12739
(8.25)

12545
(6.60)

11976
(1.77)

12862
(0.50)

12823
(0.20)

12816
(0.14)

12833
(0.28)

12876
(0.61)

12901
(0.81)

12886
(0.69)

12930
(1.04)

12957
(1.25)

12825
(0.21)

12928
(1.02)

12882
(0.66)

12911
(0.89)

12863
(0.51)

12816
(0.14)

12568
(11.07)

12547
(10.89)

12501
(10.48)

12578
(11.16)

12734
(12.54)

12794
(13.07)

12767
(12.83)

12866
(13.70)

12921
(14.19)

12550
(10.91)

12882
(13.85)

12613
(11.47)

12820
(13.30)

12721
(12.43)

12455
(10.07)

12800
(0.86)

12737
(0.37)

12721
(0.24)

12753
(0.50)

12814
(0.98)

12846
(1.23)

12829
(1.09)

12887
(1.56)

12936
(1.94)

12739
(0.39)

12911
(1.74)

12820
(1.02)

12842
(1.20)

12801
(0.87)

12723
(0.26)

12643
(1.60)

12542
(0.78)

12517
(0.58)

12566
(0.98)

12699
(2.04)

12760
(2.54)

12724
(2.24)

12850
(3.26)

12911
(3.75)

12545
(0.81)

12863
(3.36)

12721
(2.22)

12801
(2.86)

12652
(1.67)

12502
(0.46)

12298
(12.12)

11981
(9.23)

11823
(7.79)

12076
(10.10)

12521
(14.16)

12647
(15.31)

12600
(14.88)

12805
(16.74)

12883
(17.46)

11976
(9.19)

12816
(16.85)

12455
(13.56)

12723
(16.00)

12502
(13.98)

11550
(5.31)

(S ) openh264 (context-insensitive).

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

17666
(11.49)

17711
(11.78)

17666
(11.50)

17790
(12.28)

18083
(14.13)

18220
(14.99)

18082
(14.12)

18320
(15.62)

18399
(16.12)

17724
(11.86)

18329
(15.68)

17947
(13.27)

18295
(15.46)

18067
(14.02)

17609
(11.13)

17711
(5.25)

17233
(2.40)

17166
(2.01)

17414
(3.48)

17976
(6.82)

18147
(7.84)

18005
(6.99)

18277
(8.61)

18372
(9.18)

17306
(2.84)

18292
(8.70)

17946
(6.64)

18218
(8.26)

17951
(6.68)

17259
(2.56)

17666
(7.00)

17166
(3.97)

16957
(2.70)

17333
(4.98)

17949
(8.71)

18129
(9.81)

17996
(9.00)

18287
(10.76)

18376
(11.30)

17207
(4.22)

18294
(10.80)

17895
(8.39)

18204
(10.26)

17918
(8.52)

17093
(3.53)

17790
(3.98)

17414
(1.78)

17333
(1.31)

17474
(2.14)

18048
(5.49)

18215
(6.46)

18096
(5.77)

18346
(7.23)

18433
(7.74)

17448
(1.98)

18359
(7.31)

18038
(5.43)

18284
(6.87)

18034
(5.41)

17427
(1.86)

18083
(2.26)

17976
(1.65)

17949
(1.50)

18048
(2.06)

18114
(2.43)

18262
(3.27)

18131
(2.53)

18338
(3.70)

18414
(4.12)

17979
(1.67)

18349
(3.76)

18173
(2.76)

18308
(3.53)

18143
(2.59)

17915
(1.30)

18220
(1.72)

18147
(1.32)

18129
(1.22)

18215
(1.70)

18262
(1.96)

18302
(2.19)

18235
(1.81)

18401
(2.74)

18453
(3.03)

18145
(1.31)

18405
(2.76)

18278
(2.05)

18378
(2.61)

18249
(1.89)

18091
(1.01)

18082
(2.17)

18005
(1.74)

17996
(1.69)

18096
(2.25)

18131
(2.46)

18235
(3.04)

18052
(2.01)

18298
(3.40)

18376
(3.84)

18017
(1.81)

18315
(3.49)

18168
(2.66)

18284
(3.32)

18123
(2.41)

17945
(1.40)

18320
(1.45)

18277
(1.21)

18287
(1.26)

18346
(1.59)

18338
(1.55)

18401
(1.90)

18298
(1.32)

18367
(1.71)

18444
(2.13)

18295
(1.31)

18416
(1.98)

18340
(1.56)

18405
(1.92)

18341
(1.56)

18243
(1.02)

18399
(1.29)

18372
(1.14)

18376
(1.16)

18433
(1.47)

18414
(1.37)

18453
(1.58)

18376
(1.16)

18444
(1.54)

18449
(1.57)

18383
(1.20)

18453
(1.58)

18404
(1.32)

18462
(1.64)

18410
(1.35)

18337
(0.95)

17724
(5.07)

17306
(2.59)

17207
(2.00)

17448
(3.43)

17979
(6.58)

18145
(7.56)

18017
(6.80)

18295
(8.45)

18383
(8.97)

17256
(2.29)

18292
(8.44)

17956
(6.44)

18226
(8.04)

17952
(6.42)

17278
(2.42)

18329
(1.31)

18292
(1.10)

18294
(1.12)

18359
(1.48)

18349
(1.42)

18405
(1.73)

18315
(1.23)

18416
(1.79)

18453
(1.99)

18292
(1.11)

18392
(1.66)

18353
(1.44)

18430
(1.87)

18345
(1.40)

18261
(0.94)

17947
(11.91)

17946
(11.91)

17895
(11.59)

18038
(12.49)

18173
(13.32)

18278
(13.98)

18168
(13.29)

18340
(14.37)

18404
(14.77)

17956
(11.97)

18353
(14.44)

17985
(12.15)

18309
(14.17)

18165
(13.27)

17804
(11.02)

18295
(1.69)

18218
(1.27)

18204
(1.19)

18284
(1.63)

18308
(1.77)

18378
(2.16)

18284
(1.64)

18405
(2.31)

18462
(2.62)

18226
(1.31)

18430
(2.44)

18309
(1.77)

18360
(2.05)

18301
(1.73)

18182
(1.07)

18067
(2.42)

17951
(1.77)

17918
(1.58)

18034
(2.24)

18143
(2.85)

18249
(3.46)

18123
(2.74)

18341
(3.97)

18410
(4.37)

17952
(1.77)

18345
(4.00)

18165
(2.98)

18301
(3.75)

18074
(2.46)

17882
(1.38)

17609
(11.74)

17259
(9.52)

17093
(8.47)

17427
(10.59)

17915
(13.68)

18091
(14.80)

17945
(13.87)

18243
(15.76)

18337
(16.36)

17278
(9.64)

18261
(15.88)

17804
(12.98)

18182
(15.38)

17882
(13.48)

16694
(5.93)

(T ) openh264 (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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10418
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(22.33)

10222
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(21.87)
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10233
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(8.63)

10440
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10440
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(1.33)
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10414
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(0.68)

10484
(0.75)

10527
(1.17)
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(0.92)
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(0.13)

10409
(0.16)

10408
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10435
(0.41)
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(0.91)
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(1.58)
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(1.41)
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(0.92)
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(1.42)
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(1.16)

9107
(5.10)

9276
(7.05)

9105
(5.08)

9714
(12.10)

10326
(19.17)

10341
(19.34)

10438
(20.46)

10414
(20.18)

10378
(19.77)

9037
(4.29)

10375
(19.74)

10245
(18.24)

10299
(18.85)

10443
(20.52)

10335
(19.28)

10358
(0.15)

10366
(0.22)

10356
(0.12)

10388
(0.43)

10455
(1.08)

10454
(1.08)

10504
(1.55)

10484
(1.36)

10454
(1.08)

10375
(0.31)

10432
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10427
(0.81)

10431
(0.85)

10483
(1.35)

10459
(1.12)

10222
(0.31)

10233
(0.42)

10217
(0.26)

10283
(0.90)

10416
(2.22)

10416
(2.22)

10476
(2.80)

10462
(2.67)

10440
(2.45)

10245
(0.54)

10427
(2.33)

10358
(1.65)

10392
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10474
(2.78)

10429
(2.34)

10279
(0.27)

10289
(0.36)

10276
(0.24)
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10427
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10426
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10473
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10501
(0.74)

10493
(0.66)

10319
(0.16)

10327
(0.23)

10315
(0.12)

10357
(0.53)

10447
(1.41)

10453
(1.46)

10501
(1.93)

10491
(1.83)

10467
(1.59)

10335
(0.32)

10459
(1.52)

10429
(1.23)

10438
(1.31)

10493
(1.84)

10438
(1.32)

(U ) openssl (context-insensitive).

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

58935
(9.71)

59778
(11.28)

59715
(11.16)

61518
(14.52)

70654
(31.52)

71816
(33.69)

72870
(35.65)

71399
(32.91)

70170
(30.62)

60822
(13.22)

70196
(30.67)

68397
(27.32)

70538
(31.31)

70914
(32.01)

71997
(34.02)

59778
(20.85)

58565
(18.40)

60042
(21.38)

60629
(22.57)

69203
(39.90)

70698
(42.92)

71585
(44.72)

69994
(41.50)

68830
(39.15)

60905
(23.13)

68671
(38.83)

67110
(35.67)

69324
(40.15)

69577
(40.66)

70761
(43.05)

59715
(11.30)

60042
(11.91)

59590
(11.07)

61820
(15.22)

70890
(32.13)

72130
(34.44)

73169
(36.38)

71682
(33.60)

70446
(31.30)

61288
(14.23)

70433
(31.28)

68628
(27.91)

70761
(31.89)

71152
(32.62)

72338
(34.83)

61518
(9.08)

60629
(7.50)

61820
(9.62)

60519
(7.31)

69667
(23.53)

71033
(25.95)

71965
(27.60)

70285
(24.63)

69142
(22.60)

62559
(10.93)

69099
(22.52)

67394
(19.50)

69792
(23.75)

69867
(23.88)

70999
(25.89)

70654
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68940
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(8.42)

71384
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67339
(9.54)
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(9.10)

68528
(11.47)
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(13.94)

70698
(12.17)

72130
(14.44)

71033
(12.70)

68278
(8.33)

68563
(8.78)

69753
(10.67)

68370
(8.48)

67509
(7.11)

72570
(15.14)

67558
(7.19)

67409
(6.95)

68320
(8.40)

67957
(7.82)

69035
(9.53)

72870
(14.29)

71585
(12.27)

73169
(14.76)

71965
(12.87)

68940
(8.12)

69753
(9.40)
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(9.81)

69115
(8.40)

68429
(7.32)

73600
(15.43)

68366
(7.22)

68344
(7.19)

69155
(8.46)

68793
(7.89)

69898
(9.63)

71399
(14.54)

69994
(12.29)

71682
(14.99)

70285
(12.75)

67436
(8.18)

68370
(9.68)

69115
(10.87)

67230
(7.85)

66714
(7.02)

72163
(15.76)

66600
(6.84)

66602
(6.84)

67627
(8.49)

67040
(7.55)

68363
(9.67)

70170
(15.11)

68830
(12.91)

70446
(15.56)

69142
(13.43)

66651
(9.34)

67509
(10.75)

68429
(12.26)

66714
(9.44)

65505
(7.46)

70935
(16.37)

65875
(8.07)

65547
(7.53)

66686
(9.40)

66202
(8.60)

67627
(10.94)

60822
(12.20)

60905
(12.35)

61288
(13.06)

62559
(15.40)

71384
(31.68)

72570
(33.87)

73600
(35.77)

72163
(33.11)

70935
(30.85)

60415
(11.44)

70867
(30.72)

69321
(27.87)

71309
(31.54)

71690
(32.24)

72858
(34.40)

70196
(15.24)

68671
(12.74)

70433
(15.63)

69099
(13.44)

66407
(9.02)

67558
(10.91)

68366
(12.24)

66600
(9.34)

65875
(8.15)

70867
(16.35)

65174
(7.00)

65599
(7.70)

66648
(9.42)

66198
(8.68)

67728
(11.19)

68397
(14.16)

67110
(12.02)

68628
(14.55)

67394
(12.49)

66336
(10.72)

67409
(12.52)

68344
(14.08)

66602
(11.17)

65547
(9.41)

69321
(15.71)

65599
(9.50)

64654
(7.92)

66321
(10.70)

66103
(10.34)

67482
(12.64)

70538
(14.37)

69324
(12.40)

70761
(14.73)

69792
(13.16)

67339
(9.18)

68320
(10.78)

69155
(12.13)

67627
(9.65)

66686
(8.13)

71309
(15.62)

66648
(8.06)

66321
(7.53)

66767
(8.26)

67148
(8.88)

68663
(11.33)

70914
(14.39)

69577
(12.24)

71152
(14.78)

69867
(12.70)

67068
(8.19)

67957
(9.62)

68793
(10.97)

67040
(8.14)

66202
(6.79)

71690
(15.64)

66198
(6.79)

66103
(6.63)

67148
(8.32)

66272
(6.91)

68022
(9.73)

71997
(14.15)

70761
(12.19)

72338
(14.69)

70999
(12.57)

68528
(8.65)

69035
(9.45)

69898
(10.82)

68363
(8.39)

67627
(7.22)

72858
(15.51)

67728
(7.38)

67482
(6.99)

68663
(8.86)

68022
(7.85)

68519
(8.63)

(V ) openssl (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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6962
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7961
(14.48)

7960
(14.46)

8045
(15.69)

8228
(18.32)

7989
(0.00)

7989
(0.00)

7989
(0.00)
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(0.00)

8021
(0.41)

8004
(0.20)

8006
(0.21)

8026
(0.47)
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(0.28)

7989
(0.00)
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(0.23)
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(0.16)
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(0.14)

8071
(1.03)

8237
(3.10)

7971
(0.00)

7971
(0.00)

7971
(0.00)

7971
(0.00)

8004
(0.42)

7978
(0.09)

7980
(0.12)

8004
(0.42)

7988
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(0.00)

7983
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(0.37)
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(0.38)
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(0.20)
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(0.00)
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(0.15)

8002
(0.08)

8002
(0.07)

8072
(0.95)
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(3.03)

7980
(0.00)
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(0.00)
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(0.00)
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(0.00)
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(0.39)
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(0.11)

8012
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(0.12)

7980
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(0.00)

7989
(14.75)

7971
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(W ) openthread (context-insensitive).
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(2.48)
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(2.05)

20502
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(6.19)

20223
(1.80)

20262
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20440
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20456
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(6.47)

20486
(1.56)

20519
(1.73)

20475
(1.51)

20591
(2.08)

20756
(2.90)
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(2.45)

20539
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20670
(2.48)
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(2.69)

20488
(1.58)

20720
(2.72)

20621
(2.23)

20657
(2.41)

20757
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21245
(5.33)

21112
(1.53)

21148
(1.71)

21098
(1.46)
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(1.95)
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(2.44)

21265
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21149
(1.71)
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(2.05)

21298
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21252
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21245
(2.17)

21377
(2.81)

(X ) openthread (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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(Y ) re2 (context-insensitive).
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(Z ) re2 (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).



7.4. Comparison to Previous Studies 125

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

13483
(1.64)

13664
(3.00)

13541
(2.07)

14238
(7.33)

20250
(52.65)

23208
(74.95)

22779
(71.72)

25755
(94.15)

25449
(91.84)

14094
(6.24)

24899
(87.70)

23665
(78.40)

23703
(78.68)

23512
(77.24)

18585
(40.10)

13664
(5.02)

13723
(5.47)

13633
(4.78)

14364
(10.40)

20325
(56.22)

23248
(78.68)

22821
(75.41)

25780
(98.14)

25482
(95.86)

13964
(7.33)

24934
(91.64)

23706
(82.20)

23743
(82.49)

23557
(81.06)

18686
(43.62)

13541
(9.48)

13633
(10.23)

13305
(7.58)

14305
(15.67)

20268
(63.88)

23214
(87.70)

22792
(84.28)

25760
(108.28)

25454
(105.81)

13614
(10.08)

24904
(101.36)

23675
(91.42)

23711
(91.71)

23523
(90.19)

18629
(50.63)

14238
(0.84)

14364
(1.73)

14305
(1.32)

14667
(3.88)

20376
(44.31)

23256
(64.70)

22846
(61.80)

25777
(82.56)

25473
(80.41)

14696
(4.08)

24936
(76.60)

23707
(67.90)

23745
(68.17)

23577
(66.98)

18826
(33.33)

20250
(0.05)

20325
(0.42)

20268
(0.14)

20376
(0.68)

21271
(5.10)

23655
(16.88)

23317
(15.21)

26003
(28.48)

25732
(27.14)

20380
(0.70)

25250
(24.76)

24210
(19.62)

24219
(19.67)

24048
(18.82)

20805
(2.80)

23208
(0.03)

23248
(0.20)

23214
(0.06)

23256
(0.24)

23655
(1.96)

24784
(6.82)

24772
(6.77)

26797
(15.50)

26587
(14.60)

23257
(0.24)

26207
(12.96)

25415
(9.55)

25442
(9.66)

25306
(9.07)

23373
(0.75)

22779
(0.03)

22821
(0.22)

22792
(0.09)

22846
(0.33)

23317
(2.39)

24772
(8.79)

24372
(7.03)

26681
(17.17)

26469
(16.24)

22857
(0.38)

26082
(14.54)

25243
(10.86)

25265
(10.95)

25130
(10.36)

22993
(0.97)

25755
(0.01)

25780
(0.10)

25760
(0.03)

25777
(0.09)

26003
(0.97)

26797
(4.05)

26681
(3.60)

27750
(7.75)

27876
(8.24)

25778
(0.10)

27683
(7.50)

27092
(5.20)

27036
(4.98)

27048
(5.03)

25851
(0.38)

25449
(0.01)

25482
(0.14)

25454
(0.03)

25473
(0.10)

25732
(1.12)

26587
(4.48)

26469
(4.02)

27876
(9.54)

27408
(7.70)

25471
(0.09)

27436
(7.81)

26919
(5.78)

26906
(5.73)

26838
(5.47)

25541
(0.37)

14094
(23.59)

13964
(22.46)

13614
(19.39)

14696
(28.87)

20380
(78.71)

23257
(103.94)

22857
(100.44)

25778
(126.05)

25471
(123.36)

12810
(12.33)

24935
(118.66)

23705
(107.87)

23739
(108.17)

23570
(106.69)

18829
(65.11)

24899
(0.01)

24934
(0.15)

24904
(0.03)

24936
(0.16)

25250
(1.42)

26207
(5.26)

26082
(4.76)

27683
(11.19)

27436
(10.20)

24935
(0.15)

26950
(8.25)

26575
(6.74)

26571
(6.73)

26476
(6.34)

25008
(0.45)

23665
(0.02)

23706
(0.19)

23675
(0.06)

23707
(0.19)

24210
(2.32)

25415
(7.41)

25243
(6.69)

27092
(14.50)

26919
(13.77)

23705
(0.18)

26575
(12.31)

25563
(8.04)

25795
(9.02)

25681
(8.53)

23852
(0.81)

23703
(0.02)

23743
(0.19)

23711
(0.05)

23745
(0.20)

24219
(2.20)

25442
(7.36)

25265
(6.61)

27036
(14.08)

26906
(13.54)

23739
(0.17)

26571
(12.12)

25795
(8.85)

25565
(7.88)

25711
(8.49)

23892
(0.81)

23512
(0.02)

23557
(0.21)

23523
(0.06)

23577
(0.30)

24048
(2.30)

25306
(7.65)

25130
(6.90)

27048
(15.06)

26838
(14.17)

23570
(0.27)

26476
(12.63)

25681
(9.25)

25711
(9.37)

25419
(8.13)

23682
(0.74)

18585
(0.12)

18686
(0.67)

18629
(0.36)

18826
(1.42)

20805
(12.08)

23373
(25.92)

22993
(23.87)

25851
(39.27)

25541
(37.60)

18829
(1.44)

25008
(34.73)

23852
(28.50)

23892
(28.71)

23682
(27.59)

19480
(4.95)

(AA ) sqlite3 (context-insensitive).

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

88585
(17.42)

96210
(27.53)

87643
(16.17)

110430
(46.38)

248756
(229.73)

337790
(347.74)

323842
(329.25)

321820
(326.58)

342156
(353.53)

105901
(40.37)

364941
(383.73)

338557
(348.76)

311222
(312.53)

311436
(312.81)

218292
(189.35)

96210
(19.12)

101436
(25.58)

94113
(16.52)

115579
(43.10)

249208
(208.54)

337521
(317.88)

323547
(300.58)

322046
(298.72)

342601
(324.17)

110602
(36.93)

364723
(351.55)

338579
(319.19)

311326
(285.44)

311813
(286.05)

219251
(171.45)

87643
(31.65)

94113
(41.37)

82697
(24.22)

108832
(63.48)

247682
(272.06)

336829
(405.97)

323090
(385.33)

320806
(381.90)

341110
(412.40)

100814
(51.44)

363841
(446.55)

337414
(406.85)

310339
(366.18)

310274
(366.08)

217387
(226.55)

110430
(13.16)

115579
(18.44)

108832
(11.52)

125324
(28.42)

253370
(159.63)

339998
(248.40)

325998
(234.05)

325877
(233.93)

346494
(255.06)

124184
(27.25)

367327
(276.41)

341609
(250.05)

314415
(222.19)

315739
(223.54)

223772
(129.30)

248756
(3.18)

249208
(3.36)

247682
(2.73)

253370
(5.09)

286818
(18.96)

363897
(50.93)

349695
(45.04)

358135
(48.54)

378938
(57.17)

253730
(5.24)

389915
(61.72)

370059
(53.49)

343793
(42.59)

348946
(44.73)

278954
(15.70)

337790
(2.14)

337521
(2.06)

336829
(1.85)

339998
(2.80)

363897
(10.03)

396002
(19.74)

389888
(17.89)

403547
(22.02)

419653
(26.89)

341104
(3.14)

424168
(28.25)

408333
(23.47)

389134
(17.66)

395959
(19.72)

358347
(8.35)

323842
(1.97)

323547
(1.88)

323090
(1.73)

325998
(2.65)

349695
(10.11)

389888
(22.77)

372552
(17.31)

391849
(23.39)

410074
(29.12)

327570
(3.15)

415543
(30.85)

399040
(25.65)

376891
(18.68)

386561
(21.72)

343339
(8.11)

321820
(2.19)

322046
(2.26)

320806
(1.87)

325877
(3.48)

358135
(13.72)

403547
(28.14)

391849
(24.42)

384104
(21.96)

411607
(30.70)

325884
(3.48)

423215
(34.38)

408795
(29.80)

382935
(21.59)

391851
(24.42)

350727
(11.37)

342156
(2.14)

342601
(2.27)

341110
(1.83)

346494
(3.43)

378938
(13.12)

419653
(25.27)

410074
(22.41)

411607
(22.87)

423872
(26.53)

346428
(3.41)

439211
(31.11)

425415
(26.99)

403994
(20.60)

409769
(22.32)

371748
(10.97)

105901
(32.59)

110602
(38.48)

100814
(26.22)

124184
(55.48)

253730
(217.68)

341104
(327.08)

327570
(310.13)

325884
(308.02)

346428
(333.75)

109271
(36.81)

368512
(361.40)

342103
(328.33)

315318
(294.79)

315774
(295.37)

223866
(180.29)

364941
(1.99)

364723
(1.93)

363841
(1.68)

367327
(2.66)

389915
(8.97)

424168
(18.54)

415543
(16.13)

423215
(18.28)

439211
(22.75)

368512
(2.99)

436127
(21.88)

430716
(20.37)

411545
(15.01)

417787
(16.76)

385368
(7.70)

338557
(2.38)

338579
(2.39)

337414
(2.03)

341609
(3.30)

370059
(11.91)

408333
(23.48)

399040
(20.67)

408795
(23.62)

425415
(28.65)

342103
(3.45)

430716
(30.25)

408176
(23.43)

395849
(19.71)

400903
(21.23)

364177
(10.13)

311222
(2.18)

311326
(2.22)

310339
(1.89)

314415
(3.23)

343793
(12.88)

389134
(27.76)

376891
(23.74)

382935
(25.73)

403994
(32.64)

315318
(3.53)

411545
(35.12)

395849
(29.97)

365981
(20.16)

380874
(25.05)

336162
(10.37)

311436
(2.72)

311813
(2.84)

310274
(2.34)

315739
(4.14)

348946
(15.09)

395959
(30.60)

386561
(27.50)

391851
(29.24)

409769
(35.15)

315774
(4.15)

417787
(37.80)

400903
(32.23)

380874
(25.62)

380230
(25.41)

340839
(12.42)

218292
(3.20)

219251
(3.65)

217387
(2.77)

223772
(5.79)

278954
(31.88)

358347
(69.41)

343339
(62.32)

350727
(65.81)

371748
(75.75)

223866
(5.83)

385368
(82.19)

364177
(72.17)

336162
(58.92)

340839
(61.13)

253038
(19.63)

(AB ) sqlite3 (context-sensitive).

FIGURE 7.5: Predicted coverage improvements (continued).
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B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

2396
(2.93)

2430
(4.38)

2372
(1.87)

2485
(6.74)

2754
(18.30)

2758
(18.46)

2772
(19.05)

2753
(18.25)

2794
(20.00)

2512
(7.90)

2794
(20.02)

2756
(18.36)

2764
(18.70)

2745
(17.90)

2680
(15.13)

2430
(2.47)

2442
(2.95)

2403
(1.31)

2495
(5.21)

2754
(16.13)

2758
(16.29)

2772
(16.86)

2757
(16.26)

2794
(17.80)

2521
(6.30)

2794
(17.81)

2756
(16.19)

2764
(16.53)

2745
(15.74)

2681
(13.04)

2372
(7.79)

2403
(9.20)

2301
(4.56)

2470
(12.26)

2754
(25.15)

2758
(25.33)

2771
(25.96)

2740
(24.53)

2794
(26.97)

2480
(12.70)

2794
(26.98)

2755
(25.22)

2763
(25.60)

2745
(24.73)

2676
(21.61)

2485
(1.12)

2495
(1.53)

2470
(0.50)

2519
(2.48)

2755
(12.11)

2759
(12.27)

2772
(12.80)

2766
(12.56)

2794
(13.70)

2553
(3.88)

2795
(13.72)

2757
(12.19)

2764
(12.47)

2746
(11.73)

2687
(9.35)

2754
(0.03)

2754
(0.03)

2754
(0.01)

2755
(0.07)

2778
(0.89)

2780
(0.96)

2788
(1.26)

2801
(1.72)

2806
(1.92)

2756
(0.10)

2807
(1.94)

2779
(0.91)

2782
(1.03)

2772
(0.68)

2759
(0.21)

2758
(0.01)

2758
(0.01)

2758
(0.00)

2759
(0.06)

2780
(0.80)

2779
(0.76)

2788
(1.10)

2802
(1.62)

2805
(1.73)

2759
(0.07)

2806
(1.76)

2780
(0.82)

2782
(0.89)

2773
(0.55)

2760
(0.10)

2772
(0.02)

2772
(0.02)

2771
(0.01)

2772
(0.03)

2788
(0.61)

2788
(0.61)

2793
(0.78)

2806
(1.26)

2809
(1.37)

2772
(0.02)

2810
(1.40)

2789
(0.65)

2788
(0.60)

2781
(0.37)

2773
(0.09)

2753
(9.24)

2757
(9.42)

2740
(8.73)

2766
(9.77)

2801
(11.14)

2802
(11.20)

2806
(11.35)

2783
(10.42)

2814
(11.68)

2764
(9.69)

2815
(11.70)

2800
(11.12)

2802
(11.21)

2799
(11.06)

2788
(10.64)

2794
(0.00)

2794
(0.00)

2794
(0.00)

2794
(0.03)

2806
(0.45)

2805
(0.42)

2809
(0.55)

2814
(0.73)

2812
(0.64)

2795
(0.03)

2812
(0.67)

2808
(0.50)

2806
(0.43)

2804
(0.36)

2796
(0.07)

2512
(3.02)

2521
(3.39)

2480
(1.70)

2553
(4.70)

2756
(13.03)

2759
(13.17)

2772
(13.67)

2764
(13.36)

2795
(14.60)

2506
(2.76)

2795
(14.64)

2758
(13.12)

2765
(13.38)

2748
(12.69)

2696
(10.55)

2794
(0.01)

2794
(0.01)

2794
(0.00)

2795
(0.03)

2807
(0.46)

2806
(0.43)

2810
(0.57)

2815
(0.75)

2812
(0.66)

2795
(0.06)

2812
(0.65)

2808
(0.52)

2806
(0.44)

2804
(0.37)

2796
(0.09)

2756
(0.03)

2756
(0.03)

2755
(0.01)

2757
(0.09)

2779
(0.86)

2780
(0.92)

2789
(1.25)

2800
(1.65)

2808
(1.92)

2758
(0.12)

2808
(1.95)

2773
(0.67)

2783
(1.03)

2773
(0.65)

2759
(0.16)

2764
(0.00)

2764
(0.01)

2763
(0.00)

2764
(0.02)

2782
(0.66)

2782
(0.67)

2788
(0.88)

2802
(1.41)

2806
(1.54)

2765
(0.05)

2806
(1.55)

2783
(0.72)

2781
(0.63)

2774
(0.37)

2765
(0.07)

2745
(0.01)

2745
(0.01)

2745
(0.01)

2746
(0.05)

2772
(1.02)

2773
(1.04)

2781
(1.35)

2799
(1.98)

2804
(2.16)

2748
(0.12)

2804
(2.18)

2773
(1.03)

2774
(1.07)

2762
(0.64)

2749
(0.15)

2680
(0.40)

2681
(0.41)

2676
(0.23)

2687
(0.66)

2759
(3.35)

2760
(3.39)

2773
(3.89)

2788
(4.43)

2796
(4.72)

2696
(0.97)

2796
(4.74)

2759
(3.36)

2765
(3.58)

2749
(2.95)

2703
(1.24)

(AC ) stb (context-insensitive).

B

DF A+S/
A

DF A+S/
O

DF A+S/
V

E 1-c
tx

E 2-c
tx

E 3-c
tx

E DDG
E LTO

E M
A

E SAN
COV

E co
ar

se

P 2-g
ra

m

P 4-g
ra

m

P 8-g
ra

m

B

DFA+S/A

DFA+S/O

DFA+S/V

E1-ctx

E2-ctx

E3-ctx

EDDG

ELTO

EMA

ESANCOV

Ecoarse

P2-gram

P4-gram

P8-gram

4437
(4.84)

4476
(5.75)

4394
(3.81)

4594
(8.54)

4997
(18.06)

5036
(18.98)

5030
(18.84)

4997
(18.07)

5080
(20.03)

4619
(9.13)

5106
(20.64)

4987
(17.83)

5029
(18.81)

5012
(18.42)

4888
(15.48)

4476
(4.42)

4462
(4.09)

4416
(3.03)

4579
(6.82)

4961
(15.73)

5006
(16.78)

5006
(16.78)

4975
(16.06)

5051
(17.84)

4603
(7.39)

5082
(18.55)

4961
(15.75)

4999
(16.62)

4988
(16.37)

4856
(13.29)

4394
(8.84)

4416
(9.40)

4264
(5.63)

4553
(12.78)

4968
(23.06)

5014
(24.20)

5013
(24.19)

4955
(22.75)

5055
(25.21)

4553
(12.79)

5090
(26.10)

4968
(23.06)

5006
(24.00)

4991
(23.63)

4857
(20.32)

4594
(2.72)

4579
(2.38)

4553
(1.80)

4639
(3.72)

4991
(11.59)

5029
(12.45)

5034
(12.57)

5015
(12.12)

5074
(13.45)

4679
(4.62)

5102
(14.07)

4997
(11.72)

5024
(12.34)

5013
(12.09)

4892
(9.38)

4997
(2.07)

4961
(1.33)

4968
(1.47)

4991
(1.94)

4991
(1.95)

5038
(2.91)

5037
(2.89)

5044
(3.03)

5063
(3.42)

4965
(1.41)

5100
(4.18)

4999
(2.12)

5023
(2.60)

5028
(2.70)

4982
(1.77)

5036
(1.28)

5006
(0.68)

5014
(0.84)

5029
(1.15)

5038
(1.33)

5060
(1.77)

5072
(2.00)

5082
(2.21)

5094
(2.45)

5013
(0.82)

5119
(2.95)

5043
(1.43)
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FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).
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FIGURE 7.5: Predicted coverage improvements (continued).



130 Chapter 7. Comparison of Coverage Metrics

The evaluation performed by Wang et al. [214] was inconclusive when comparing
the performance of individual coverage metrics: for CGC “there is no single [coverage
metric] winner that beats everyone else”, while the use of LAVA-M was “not very suitable
for our goal [of comparing the performance of coverage metrics]”. Finally, the real-world
targets report crashes rather than bugs, and these bugs were not thoroughly dedu-
plicated (e.g., it is unrealistic to assume up to 1,400 unique bugs were found in the
info2cap target). Despite this, Wang et al. [214] found that combining multiple cov-
erage metrics in an ensemble configuration (where each fuzzer ran in parallel and
shared seeds) “outperformed the baseline [i.e., fuzzing with a single coverage metric] by
wide margins”.

Salls et al. [183] similarly studied the performance of different coverage metrics,
however, their study focused on formalizing coverage metrics by borrowing concepts
from static analysis. Again, their study involved a relatively small evaluation of
targets sourced from the CGC benchmark and two real-world programs. Salls et
al. [183] showed that fuzzing outcomes were maximized when multiple coverage
metrics were used in an ensemble configuration (which we did not investigate). When
restricted to only a single metric, the “edge + return loc”—or context-sensitive edge
coverage here—metric achieved the highest code coverage.

In contrast to these two studies, ours is the first large-scale comparison of coverage
metrics that takes into account data-flow-based metrics. Moreover, we focus on the
coverage achieved by different coverage metrics (as opposed to crash and bug counts).
Once again, we found that more-sensitive coverage metrics did not necessarily lead
to improvements in fuzzer performance, due to the “queue explosion” problem [141].
While Salls et al. [183] recommend combining multiple coverage metrics to maximize
fuzzer performance, we do not recommend combining highly sensitive metrics (e.g.,
memory accesses, more sensitive forms of def -use chains) unless aggresive filtering
occurs when sharing seeds between fuzzing nodes (assuming an ensemble fuzzing
strategy is used). Moreover, our results in Section 7.3.3 show that there is little
reason to look past traditional edge coverage metrics: either the ELTO or ESANCOV

varieties will suffice for maximizing a fuzzer’s state space search. If an ensemble
configuration with multiple metrics is used, a combination of lossless edge coverage,
context-sensitive edge coverage, edge coverage augmented with a DDG, and n-gram
coverage should be preferred.

7.5 Future Work

We see a number of promising directions for future work, which we discuss here.
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Visualizing coverage. As discussed in Section 7.2, a fuzzer’s state-space search
is typically visualized with a “(control-flow) coverage over time” plot. However,
is this the best approach for visualizing coverage metrics across multiple dimensions? In
particular, how can we incorporate the data-flow coverage approaches discussed
throughout this dissertation (e.g., here and in Section 5.5.4) with traditional control-
flow coverage? If we think of control- and data-flow as different axes of a target’s
state space (as illustrated in Fig. 3.2), then a method for visualizing high-dimensional
data—e.g., Principal Component Analysis (PCA) or t-distributed stochastic neighbor
embedding (t-SNE) [136]—may be appropriate. We leave improvements to the
visualization of fuzzers’ state-space search as future work.

Querying state space search. While effective, fuzzers often benefit from human-
in-the-loop interaction. For example, IJON [7] uses human-provided annotations to
guide the fuzzer. Similarly, Yan et al. [226] observed that many security professionals
optimize fuzzing by assisting and guiding the testing process. Unsurprisingly, im-
proving fuzzing via human interaction requires a thorough understanding of state
space coverage (e.g., to understand fuzz blockers [70]). While tools such as Fuzz
Introspector [32] and InFuzz [226] improve human understanding of a fuzzer’s state
space search (e.g., via a web-based user interface), they do not provide the user
with a convenient querying interface. This lack of a convenient querying interface
hinders security professionals—who often have relevant domain expertise—from
better understanding fuzzer performance (e.g., beyond aggregate coverage statistics
that are typically available). We propose using a logic-based query language—e.g.,
Datalog—for analyzing and querying the coverage achieved during a fuzzing cam-
paign. Datalog has a long history of being used to build static program analyses [15,
26, 64, 66, 81, 179]. Developing a query tool in Datalog—rather than a traditional
graph database (e.g., Neo4j [218])—would allow one to combine static and dynamic
analysis data in a single query tool. This combination would enable a better under-
standing of fuzzer roadblocks and a mechanism for quantifying data flow coverage.
We leave building such a query tool as future work.

Ensemble fuzzing. Our evaluation focused on understanding the performance
of fuzzer coverage metrics individually. However, as discussed in Sections 7.3.3
and 7.4, different coverage metrics can be combined using an ensemble fuzzing
configuration [44, 78, 171, 183, 214]. In this configuration, multiple coverage metrics
are run in parallel and seeds are shared across fuzzing instances. However, care must
be taken to prevent queue explosion, which can hinder (a) an individual fuzzer’s
seed scheduler, and (b) the effective sharing of seeds across fuzzers. Moreover, a
diversity of fuzzers may also be beneficial (e.g., non-AFL-based fuzzers). While we
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used the CUPID [78] approach for predicting the performance of combining multiple
coverage metrics, we leave the experimentation, optimization, and validation of these
predictions as future work.

7.6 Chapter Summary

This final chapter discussed the difficulties in measuring and quantifying a fuzzer’s
state space search. To address this, we proposed using context-sensitive static and
dynamic analyses to quantify the control-flow elements of a fuzzer’s state space
search. We use these analyses to compare the full range of control- and data-flow-
based coverage metrics discussed throughout this dissertation. Our results once again
demonstrated the superiority of traditional edge coverage metrics. Unfortunately,
our results also show that even state-of-the-art static analyses are far from accurate
on typical fuzzer targets; they either failed to complete their analysis or produced
unrealistic results. We hope these results and ideas for future work inspire others to
improve the accuracy and scalability of static analyses for real-world code bases.

Next, we summarize this dissertation and provide some final reflections.
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Chapter 8

Conclusions and Reflections

While fuzzing has repeatedly demonstrated its effectiveness at finding bugs in real-
world software, it is not a panacea for society’s software security woes. For example,
most fuzzing applications remain focused on exposing memory safety violations
(despite other bug classes—e.g., privilege escalation, type confusion—enabling ex-
ploitation), and “deep” bugs continue to evade long-running fuzzing campaigns (e.g.,
with the fuzzer unable to satisfy complex control- and data-flow dependencies). It
is this last point that we focus on in this dissertation. In particular, those deep bugs
lurking in the corners of a program’s state space.

This dissertation attempts to understand better and improve fuzzers’ state space
search. To this end, we present several techniques, frameworks, and methodologies
for measuring and enhancing a fuzzer’s ability to explore a target program’s state
space.

Chapters 2 and 3 start with an overview of coverage-guided greybox fuzzing, explor-
ing and systematizing the different techniques fuzzers use to measure a target’s state
space. We find that most prior work relies on control-flow-based coverage metrics.
While performant, these metrics only consider one dimension of a program’s state
space (i.e., features based on control flow), disregarding data-flow features.

Chapter 4 empirically demonstrates the importance of carefully curating a fuzzer’s
initial seed set, bootstrapping the fuzzer’s state space search. Our results show that
fuzzing outcomes (i.e., bug discovery and state space exploration) vary significantly
depending on this initial seed set. This led to the design of a new fuzzing corpus
minimizer, OPTIMIN. Unlike prior work, OPTIMIN can derive an optimal corpus by
encoding the corpus minimization problem as a boolean satisfiability (SAT) problem.
OPTIMIN has since been adopted by the broader fuzzing community and incor-
porated into AFL++1 and LIBAFL2, two state-of-the-art coverage-guided greybox

1https://github.com/AFLplusplus/AFLplusplus/commit/62f1bfed99b82bc073c138a00ff9a30bb596d09d
2https://github.com/AFLplusplus/LibAFL/pull/739

https://github.com/AFLplusplus/AFLplusplus/commit/62f1bfed99b82bc073c138a00ff9a30bb596d09d
https://github.com/AFLplusplus/LibAFL/pull/739
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fuzzers.

Chapter 5 promotes data-flow coverage to a first-class citizen (rather than using it
to complement control-flow coverage, or ignoring it altogether). We design and
implement a new fuzzer, DATAFLOW, that abstracts a target’s state space based on
data-flow features (rather than traditional control-flow features); specifically, def -
use chains. We show that, while not as performant as control-flow-driven fuzzers,
DATAFLOW can discover bugs traditional fuzzers miss.

Chapter 6 investigates the difficulties of measuring fuzzers’ state space search. We
evaluate the use of several static analysis frameworks for quantifying a fuzzer’s state
space search, with our results revealing the limitations of these frameworks.

Finally, in Chapter 7 we implement the full range of coverage metrics discussed
throughout this dissertation, comparing their ability to explore a target’s state space.
Our implementation of n-gram coverage has since been adopted by the broader
fuzzing community and incorporated into AFL++.3

Each of the chapters that make up this dissertation supports our thesis: enhancing
state space search leads to improved fuzzing outcomes. Without a strong foundation,
a fuzzer’s state space exploration is limited. Some bugs only manifest in program
states not explicitly visible in control-flow-based abstractions. Security professionals
deploying fuzzers require rigorous techniques to reason about their fuzzer’s state
space search. Ultimately, these insights lead to better fuzzing outcomes and, ideally,
more secure software.

8.1 Reflections

This dissertation opens the door to new approaches for improving fuzzers’ state space
exploration. We present a summary of reflections here; detailed future work ideas are
presented at the end of each chapter.

Chapter 4 focused on characterizing initial seed sets using traditional control-flow
features (e.g., edge coverage). However, as this dissertation shows, control-flow
features cover only one dimension of a target’s state space. Do fuzzers perform
better when bootstrapped with seeds that also maximize coverage across data-flow
features?

In Chapter 5, we concluded that one of the main impediments to DATAFLOW’s
success was its high run-time cost (reducing fuzzer iteration rates). Does improving

3https://github.com/AFLplusplus/AFLplusplus/commit/5a74cffa0f22b4e3b3dbc829dfb1c8f7c7a6fb76

https://github.com/AFLplusplus/AFLplusplus/commit/5a74cffa0f22b4e3b3dbc829dfb1c8f7c7a6fb76
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and optimizing the performance of our def -use chain coverage implementation lead
to better fuzzing outcomes?

The static analyses presented in Chapter 6 rely on access to source code. This simpli-
fies analysis, particularly compared to binary code (where control flow is harder to
recover, and types are nonexistent). Can similar analyses be used by those measuring
and comparing fuzzer performance on targets where source code is not available
(e.g., proprietary software, embedded firmware)?
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