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Abstract

With the rapid rise in the number of exploits targeting
the Java runtime environment, new tools are required
to detect these malicious Java applications. This pa-
per proposes one such tool, the Java Malware Detec-
tor (JMD). JMD takes a hybrid approach that com-
bines symbolic execution, instrumentation and dy-
namic analysis to detect malware that subverts Java’s
access control mechanisms. Using this approach, we
aim to derive any trigger conditions that may exist
before instrumenting and executing the malware in
a controlled environment to observe whether it es-
capes the Java security sandbox. A key element of
this approach is our use of existing open-source soft-
ware platforms—specifically, Java Pathfinder and As-
pectJ. By using real-world Java malware samples we
are able to evaluate the effectiveness of JMD. The re-
sults of this evaluation show that JMD’s instrumen-
tation and dynamic analysis capabilities provide an
effective tool for detecting a wide range of Java mal-
ware: we successfully detected malware variants that
represent fourteen of the known access control-related
CVEs disclosed over the past four years. However, our
success in using symbolic execution to derive trigger
conditions was limited, mainly due to the incomplete
state of the String handling implementation in Java
Pathfinder’s symbolic execution plugin.

1 Introduction

The number of exploits targeting the Java Runtime
Environment (JRE) has been increasing at an alarm-
ing rate. During the 12 months from September 2012
to August 2013, a Kaspersky Lab report claimed to
have detected over 14.1 million attacks that relied on
a Java exploit—an increase of 33.3% on the previous
twelve months [9]. Cisco found that Java exploits rep-
resented 91% of all Indicators of Compromise (IoC)
in 2013 [4]. Figure 1 illustrates the recent escalation
of the Java malware problem in terms of the number
of JRE CVEs issued each year.1

The most common delivery method for these ex-
ploits is a Java applet [9]. A Java applet is a Java
application that is accessed via a web browser and
executed on the local host in a Java Virtual Ma-
chine (JVM) instance. To execute a Java applet,
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1The statistics for this graph are sourced from the CVE Details
website, http://www.cvedetails.com.
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Figure 1: Sun/Oracle JRE vulnerabilities from 2001
to 2013

a web browser requires the installation of a Java
plug-in. Java’s pervasive install base2 means that
there is a high chance a user has a Java plug-in in-
stalled, making Java a popular target for drive-by
download attacks (where the user either unwittingly
executes a malicious applet or authorises its execu-
tion without fully understanding the risks). Further-
more, Java exploits can provide a relatively cheap
path to reliable remote code execution compared with
exploits that require address space layout randomisa-
tion (ASLR) and data execution prevention (DEP)
to be bypassed [34]. These combined properties have
made Java a popular target for malware authors.

The prevalence of Java malware means that ac-
curate and timely detection methods have become
crucial elements of effective computer network de-
fence. Traditional malware detection (e.g. that pro-
vided by an anti-virus product) relies heavily on
signature-based techniques. However, the weak-
nesses of signature-based detection techniques are
well-known [17, 15]—they can only detect previously
discovered threats and are unable to detect zero-day
exploits. Additionally, malware authors can often
evade anti-virus products through obfuscation.

To supplement signature-based detection meth-
ods, dynamic analysis techniques are often used to
run malware in a controlled environment (a sand-
box ) where it can be monitored for malicious activ-
ity. While dynamic analysis may overcome the limi-
tations of signature-based detection in some cases, it
is still possible for malware to evade detection by re-
maining dormant until a particular trigger condition
is met [1, 16]. In order to identify and solve trigger
conditions within a given sample (so that code cover-
age is maximised during dynamic analysis), symbolic
execution can be utilised to explore alternate code

2The Oracle Java 7 Windows installer claims that “three billion
devices run Java”.
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paths and attempt to derive trigger conditions that
are required for a particular code path to execute [1].

We have combined the techniques of symbolic ex-
ecution, instrumentation and dynamic analysis in de-
veloping a system aimed specifically at detecting Java
malware. Our Java Malware Detector (JMD) takes
Java bytecode as input, performs symbolic execution
on the bytecode to derive the trigger conditions re-
quired to maximise code coverage, instruments the
bytecode and then performs dynamic analysis on the
instrumented sample3 to determine if the JRE’s ac-
cess control mechanisms have been subverted. Note
that JMD is not designed to detect Java malware that
targets native code vulnerabilities (§3.1 discusses our
rationale for taking this approach).

The main contributions made in this paper are:

• The design and implementation of a hybrid de-
tection system. This detection system com-
bines symbolic execution, instrumentation and
dynamic analysis techniques to specifically tar-
get Java malware.

• The extension of Java Pathfinder’s symbolic exe-
cution engine (Symbolic Pathfinder) to find trig-
ger conditions in Java malware.

• The design and implementation of a mecha-
nism for detecting the subversion of Java’s ac-
cess control mechanisms using Aspect-Oriented
Programming (AOP) techniques.

The remainder of this paper is organised as fol-
lows: §2 provides background information relevant to
the design of JMD; §3 discusses our design and im-
plementation decisions for JMD; §4 evaluates JMD’s
performance; §5 examines previous work in the area
of Java malware detection; and §6 concludes the pa-
per and suggests some ideas for future work.

2 Background

This section provides background material on the
Java Runtime Environment (JRE), its security model
(with a particular focus on access control mecha-
nisms) and examples of how JRE vulnerabilities have
been exploited in the past.

2.1 The Java Runtime Environment

‘The JRE’ (as defined by Oracle [24]) formally con-
sists of the JVM and all associated libraries and com-
ponents which enable the execution of applications
written in the Java programming language. Notion-
ally, the runtime environment for a Java program can
also be abstracted into a number of layers, as illus-
trated in Figure 2 (adapted from [31]).

A Java application (the top layer) is compiled into
machine-independent Java bytecode, which executes
in a JVM (second layer) instance. As is suggested
by Java’s “write once, run anywhere” mantra, the
JVM—which is available on several operating system
(OS)/architecture combinations—allows a Java appli-
cation to be cross-platform and portable. Java appli-
cations can be deployed in a variety of ways, but Java
malware typically takes the form of an untrusted Java
applet4 (see §2.2.2 for more on the nature of untrusted
applets).

3Dynamic analysis may proceed multiple times, depending on
the number of trigger conditions identified during symbolic execu-
tion.

4Given that applets are the most common deployment vector
for Java exploits [9], we use the terms Java application and Java
applet interchangeably when discussing Java malware.

Java Application

Java Native Layer

Operating System

Java Virtual Machine
Class Verifier
Security Manager

Figure 2: Runtime environment of a Java program,
with some elements of the Java security architecture
highlighted

Beneath the JVM lies the native layer, with which
the JVM interacts when Java applications and APIs
need to interface with native code. Java’s APIs call
native layer code in order to make platform-specific
system calls (e.g. for implementing operations on a
local file system) and to interact with software written
in another language (e.g. C, assembly, etc.).

2.2 Code Verification and Access Control

Java’s security architecture is realised by a set of lan-
guage features and APIs which encompass areas such
as cryptography, PKI, authentication and secure com-
munication [23]; however, the features and APIs most
relevant to a discussion of Java malware are those re-
lated to code verification and access control.

Java bytecode is verified at load-time to “ensure
that only legitimate bytecodes are executed in the
Java runtime” [23] (discussed further in §2.2.1). At
run-time, the access control APIs mediate access to
sensitive resources and operations (e.g. access to local
files, sending/receiving arbitrary data over a network,
etc.) in accordance with a defined security policy (dis-
cussed further in §2.2.2).

It is important to note that code execution in the
native layer occurs outside the purview of Java’s ac-
cess control APIs. As such, Java malware seeking
to subvert Java’s security restrictions may choose to
target either a vulnerability in the access control API
(i.e. code being executed in the JVM layer) or a vul-
nerability in a native library called by Java (i.e. code
being executed in the native layer).

2.2.1 Class Verifier

When Java classes are loaded by the JVM, the class
verifier performs several passes over the bytecode in
order to ensure the correctness of the class. This in-
cludes checking for forged pointers, stack overflows
and underflows, access (public/protected/private) vi-
olations and ensuring type safety. If any of these
checks fail, an error is thrown by the JVM.

CVE-2012-1723 [21] is an example of a vulnerabil-
ity in the class verifier which allows malicious byte-
code to perform a type-confusion attack. This at-
tack is possible due to an invalid optimisation in the
class verifier when a field access operation is per-
formed [27]. Class verifier exploits such as CVE-2012-
1723 are considered outside JMD’s scope.

2.2.2 Security Manager

The security manager (represented by an object of
type SecurityManager) mediates all access con-
trol decisions for Java APIs. This ensures that an
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application adheres to a particular security policy at
run-time.

When a local Java application is loaded from disk
and run, it is executed with full user privileges and
without a security manager [23, 7] (unless the user ex-
plicitly installs one in their application code or sup-
plies the -Djava.security.manager command-
line flag). By contrast, untrusted applets (which are
typically accessed over the Internet from an unknown
source) execute in the presence of a security manager,
which enforces a reduced set of privileges in order to
prevent the execution of unsafe operations. The re-
stricted environment in which untrusted applets exe-
cute is commonly known as the Java sandbox.

Whenever a potentially unsafe operation is at-
tempted by a sandboxed Java application or API,
the SecurityManager object checks whether the
class has been assigned the relevant permission (rep-
resented by a Permission object). The Access
Controller class is the SecurityManager’s
mechanism for checking these permissions. If the op-
eration is not allowed in the current Java sandbox, a
SecurityException is thrown. Examples of po-
tentially unsafe operations that require a particular
set of permissions include file (e.g. read, write, etc.),
socket (e.g. connect, accept, etc.) and ClassLoader
(e.g. create) operations.

The set of permissions that are applied to a sand-
box are declared in a security policy file (represented
at run-time by a Policy object). This policy file
explicitly lists the permissions granted to a set (or
multiple sets) of classes loaded from a particular lo-
cation and/or cryptographically signed by a particu-
lar key. At run-time, the association between these
sets of classes and their granted permissions is encap-
sulated within a ProtectionDomain object. The
JRE provides a default security policy, which can be
either supplemented or replaced by an administrator
who wants to provide their own custom policy file
when the JVM is started.

Some example vulnerabilities that affect the secu-
rity manager include CVE-2008-5353 [19], CVE-2012-
0507 [20] and CVE-2013-0422 [22]. Although these
vulnerabilities are quite different (ranging from dese-
rialisation issues to insufficient package access check-
ing), the malware that targets them shares the same
goal—to manipulate or disable the security manager
so that arbitrary code can be executed. Exploits
which target these types of vulnerabilities are what
JMD is designed to detect.

3 Design and Implementation

In this section we outline our design choices and
JMD’s implementation details.

3.1 Assumptions

We have designed and implemented JMD to detect
malware that successfully exploits vulnerabilities in
Java’s access control mechanisms (which operate in
the second layer of Figure 2). In particular, we target
malware that escapes the Java security sandbox by
disabling or subverting the run-time security manager
(as discussed in §2.2.2). Malware that targets vulner-
abilities in either the Java class verifier (as discussed
in §2.2.1) or in the Java native layer (as discussed in
§2.1) are considered outside JMD’s scope.

To put this in perspective, Gorenc et al.’s sur-
vey of Java vulnerabilities found that approximately
half of the vulnerabilities patched between 2011 and

2013 had the ability to “bypass the sandbox and ex-
ecute arbitrary code on the host machine” [8]. The
top two vulnerability sub-categories in their sample
set were “unsafe reflection” and “least privilege vio-
lation”, both of which relate solely to Java’s access
control APIs and are thus potentially detectable by
JMD. While the amount of malware targeting the
Java native layer may be increasing [31], Java’s ac-
cess control model remains a popular target for mal-
ware authors—such exploits provide attackers with
a “write once, run anywhere” weapon that does not
require further customisation for a specific platform
and/or OS [8].

3.2 Overview

Figure 3 provides a high-level overview of JMD’s dif-
ferent stages.

Java
Bytecode

Security
Policy

Symbolic
Execution

Instrument
Dynamic
Analysis

Figure 3: An overview of JMD

JMD takes a compiled Java application as input
(Java bytecode, either as a .class or .jar file). In
most cases this will be a Java applet, although JMD
is able to analyse any Java application provided that
it either (a) extends java.applet.Applet or (b)
contains a static main method.

By default, a sample passes consecutively through
JMD’s three main stages of symbolic execution, in-
strumentation and dynamic analysis before reporting
results to the user. However, JMD can optionally re-
strict its processing to certain stages, such as symbolic
execution only, or instrumentation/dynamic analysis
only.

The symbolic execution stage (see §3.3) attempts
to determine what code paths exist within the sample,
and to derive the trigger conditions that are required
to execute them.

In the instrumentation stage, JMD injects custom
logging code into the sample by using aspect-oriented
programming (AOP) techniques (see §3.4). This log-
ging code is designed to report access control viola-
tions, such as subversion of the security manager or
unauthorised access to privileged APIs.

In the dynamic analysis stage (see §3.5), instru-
mented bytecode is executed within a virtual envi-
ronment, in the context of a specific security policy.
The instrumented bytecode detects and records any
successful actions which require permissions that were
not granted in the security policy. For example, if a
sample is able to set the SecurityManager object
to null—an operation that requires explicit permis-
sions which are not given in JMD’s default security
policy— then JMD can conclusively infer that an ac-
cess control vulnerability in the JRE has been success-
fully exploited. Note that dynamic analysis may be
run multiple times, depending on how many trigger
conditions are found during the symbolic execution
stage.

At the conclusion of JMD’s processing, results are
returned to the user in an XML report.

The three stages are discussed in greater detail in
the following sections.
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3.3 Symbolic Execution

Symbolic execution is a mechanism for deriving the
conditions required for a particular code path to exe-
cute [11]. For performing symbolic execution of Java
bytecode, we use Symbolic PathFinder (SPF), which
is an extension of the open-source Java PathFinder
platform. In this section we focus on the differences
between applying SPF to malware analysis and SPF’s
standard usage. A more detailed description of SPF’s
internals is available in [25].

SPF was primarily designed as a bug checking and
test generation tool for Java applications. At a high
level, SPF proceeds by replacing method arguments
with symbolic values. Symbolic expressions are dy-
namically constructed and recorded as these symbolic
values propagate through a given execution path.

These symbolic values and expressions are then
used to derive the constraints required for a partic-
ular code path to be executed. Through a combina-
tion of searching and backtracking, SPF attempts to
build constraints for all code paths to ensure maxi-
mum code coverage. Once SPF has finished process-
ing the sample, a constraint solver attempts to deter-
mine the exact conditions required for each particular
code path to be executed.

There are a number of technical issues that arise
when applying SPF to the identification of trigger
conditions in Java malware.5 For example, SPF can
not process bytecode unless it contains local variable
debug information. A malware author would not nor-
mally include this information in the bytecode, as re-
moving it increases the difficulty of reverse engineer-
ing and determining the malware’s intention. There-
fore, this debug information must be synthesised and
injected into the bytecode before symbolic execution
in SPF can occur.

SPF also requires the Java application to have a
static main method as an entry point. However, Java
applets do not have a main method—they rely on
alternate entry points being invoked by the JVM at
run-time.

Additionally, SPF only allows method arguments
to be treated symbolically. However, it is common
for malware to query the external environment and to
take a specific code path that depends on the result of
this query. Examples of external environment queries
are given in Table 1. Given that SPF does not provide
a mechanism to treat the result of these method calls
symbolically, modifications were required to enable
the exploration of code paths (and hence the iden-
tification of trigger conditions) that depend on their
results.

The following sections describe how we extended
SPF’s behaviour in order to remediate these issues for
JMD.

3.3.1 Symbolic Execution of Applets

As mentioned in §3.3, SPF only allows the execution
of applications with a static main method as its entry
point. This prevents the symbolic execution of Java
applets, which require a browser or applet viewer to
use the init or start methods as an entry point.

To overcome this restriction, a class con-
taining a main method (based on Kurniawan’s
AppletRunner class [12]) was implemented for use
as an entry point to run the applet within SPF.

We also implemented both a model and a native
peer class to model the standard Applet class in

5A few examples of the issues we faced are mentioned here, but
an exhaustive discussion is not included due to space constraints.

SPF.6 This enabled us to abstract away the under-
lying behaviour of a Java applet (which depends on
functionality in the Java native layer; an element be-
yond SPF’s symbolic execution capabilities). While
our model and native peer classes were mostly suf-
ficient for modelling malicious Java applets (which
typically contain an exploit without any graphical
component), this approach would be insufficient in
modelling an applet containing an exploit that de-
pended on the graphical capabilities available in the
Java API.

3.3.2 Taint-based Symbolic Execution

We have used concepts from dynamic taint analy-
sis [18] to allow SPF to construct constraints and
explore code paths that depend on the external en-
vironment. Traditional dynamic taint analysis is the
process of marking (or tainting) data that originates
from an external (and possibly untrusted) source
and tracking that data during application execution.
However, dynamic taint analysis can also be combined
with symbolic execution to construct constraints rep-
resenting only the parts of execution that depend
upon the tainted values [29]. Examples of external
environment queries for which we want to construct
constraints are listed in Table 1.

SPF provides a number of symbolic listeners that
“gather and display information about the path con-
ditions generated during the symbolic execution” [25].
We extended one of these listeners (the Symbolic
SequenceListener) to allow local variables that
store tainted data to be treated symbolically (in addi-
tion to method arguments, which are already treated
symbolically by SPF).

Rather than blindly marking all local variables as
symbolic in SPF (which would quickly lead to path
explosion, discussed further in §4.4), JMD includes
an SPF configuration option that allows the user to
specify the signature of each method call that they
wish to treat as producing tainted data. The tainted
data (we limit ourselves to String objects) returned
by these method calls is then marked as symbolic.
SPF then treats this tainted data the same way it
treats a symbolic method argument; i.e. constraints
are constructed and solved in order to determine the
trigger conditions required for a specific code path to
be executed.

For example, the code in Figure 4 comes from a
decompiled and deobfuscated malware sample. Us-
ing our taint-based symbolic execution approach, SPF
can determine that a different code path will execute
depending on the value returned by System.get
Property("os.name") (i.e. the OS running SPF).
This information can then be provided to JMD’s dy-
namic analysis stage, in which the (instrumented)
malware would be executed four times, once for each
result returned by System.getProperty.

3.4 Instrumentation

After SPF has completed symbolic execution of the
Java malware, it can be instrumented and prepared
for dynamic analysis.

The malware is instrumented using AspectJ, which
is an open-source AOP extension to the Java lan-
guage [13, 10]. AOP is a programming paradigm
which seeks to achieve “separation of cross-cutting
concerns” [10], where cross-cutting concerns are soft-
ware components that impact (cut across) multiple

6Further information on model and native peer classes is avail-
able in [25].
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Table 1: Examples of external environment queries

Method call Description

Applet.getParameter Customise an applet’s operation via a name/value pair
System.getProperty Query a system property
System.getenv Query an environment variable

String s1 = System.getProperty("os.name").
toLowerCase();

if (s1.indexOf("win") >= 0) {
...

} else if (s1.indexOf("mac") >= 0) {
...

} else if (s1.indexOf("nix") >= 0 || s1.
indexOf("nux") >= 0) {
...

} else {
return;

}

Figure 4: Decompiled and deobfuscated malware that
alters its behaviour based on a tainted local variable

logical modules. The classic example of a cross-
cutting concern is a logging library, which is usu-
ally implemented by linking a logger multiple times
into several separate program modules. This results
in increased levels of dependency and complexity, as
the logging implementation becomes entangled with
the core functionality provided by the program. By
contrast, an AOP approach would maintain separa-
tion between a program’s core logic and the logging
components during the software development process.
The components are subsequently combined together
at compile or load-time to create the final system—a
process known as weaving.

For JMD’s purposes, we have exploited AspectJ’s
ability to weave existing bytecode (at both compile
and load-time) in order to monitor Java’s access con-
trol mechanisms. Figure 5 shows the important parts
of the code which JMD weaves into its samples, with
some of the finer details abstracted away or omit-
ted. The SecurityMonitor aspect (i.e. the mod-
ule expressing the cross-cutting concern, which is the
monitoring of access control mechanisms) includes a
pointcut7 anyCallOrExec (line 11). This pointcut
selects all method calls and their execution as join
points (i.e. locations where the instrumentation code
is weaved) to ensure malicious activities are recorded
as early as possible.

The advice (lines 13–16) is executed whenever the
anyCallOrExec pointcut picks out a join point (i.e.
after every method call returns control to the caller,
or a method body completes). This advice calls two
methods: checkSecMan and checkForIllegal
Perms. However, the advice is extensible and ad-
ditional checks can easily be added.

The checkSecMan method (lines 18–26) com-
pares the security manager’s current state with its
initial state (recorded on line 3). If the check returns
an inconsistent result, an alert can be logged that in-
dicates a compromise of the security manager.

checkForIllegalPerms (lines 28–40) ensures
adherance to the permissions granted in the secu-

7In AOP parlance, a pointcut is a program element which selects
a particular join point—for example, a particular method signa-
ture like System.out.println(String) is a potential join point
that could be expressed in a pointcut. Data from the execution
context of this join point can then be queried and manipulated by
third-party code within an advice block. For further details re-
lating to AspectJ’s implementation of pointcuts, advice and join
points, see [10, 13].

rity policy file. The permissions for the currently-
executing object are retrieved from the join point’s
context (lines 29–31). These permissions are then
compared with the initial permissions specified in the
policy file (line 5). If permissions that were not origi-
nally granted to the application are present, an alert
can be logged indicating an access control compro-
mise.

These methods (checkSecMan and checkFor
IllegalPerms) attempt to verify the integrity of
the Java security manager and its related classes. As
discussed in §2.2.2, the ultimate goal of Java malware
that seeks to subvert the Java sandbox is to disable
(or change the state of) the security manager so that
arbitrary code can be executed. By using instrumen-
tation as described here to monitor the security man-
ager and the set of permissions to which an applica-
tion should have access, malware which successfully
exploits a vulnerability in a Java access control API
can be detected during JMD’s dynamic analysis stage.

3.5 Dynamic Analysis

After instrumentation takes place, the sample is ready
for dynamic analysis. To facilitate this, JMD includes
support for two major virtualisation platforms: Vir-
tualBox and VMware. A Cuckoo Sandbox [5] plugin
was also developed.

Before dynamic analysis can occur, a sand-
box virtual machine (VM) must be appropriately
configured—i.e. an OS and a JRE must be installed.
Given JMD’s detection strategy of observing a sam-
ple’s behaviour within a controlled environment, it is
important that the JRE used during dynamic anal-
ysis be susceptible to the vulnerabilities targeted by
the sample. As such, a sandbox VM can be config-
ured with multiple JREs installed. The desired JRE
for each JMD invocation can then be specified in a
configuration file.

In order to execute Java applets in the sandbox
VM, an appropriate HTML container file must first
be generated. This HTML file includes any applet
parameters that were found during the symbolic ex-
ecution stage (see §3.3) or that have been explicitly
entered by the user. During application execution
(which involves executing the HTML file in a web
browser or the JDK’s appletviewer utility), the
SecurityMonitor aspect detects and logs mali-
cious activity targeting access control mechanisms as
described in §3.4. If multiple combinations of applet
parameters are found in the symbolic execution stage,
then the applet is executed once for each combina-
tion. Once completed, JMD’s logs are retrieved from
the sandbox VM, the VM is (optionally) reverted to
a clean snapshot and the logs are processed.

JMD produces an XML report describing its re-
sults. An example XML report is given in Figure 6.
The report contains information on the runtime envi-
ronment (gathered in the SecurityMonitor’s con-
structor) and the specific classes that performed any
(detected) malicious actions. The example in Figure
6 shows that both an unauthorised permission and
the disabling of the security manager were detected
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1 public aspect SecurityMonitor {
2
3 private final SecurityManager initSecMan = System.getSecurityManager();
4
5 private final PermissionCollection initPerms = Policy.getPolicy().getPermissions(SecurityMonitor.class.

getProtectionDomain());
6
7 public SecurityMonitor() {
8 // Gather information on the runtime environment
9 }

10
11 pointcut anyCallOrExec(): call(* *.*(..)) && execution(* *.*(..));
12
13 after(): anyCallOrExec() && !within(SecurityMonitor) {
14 checkSecMan();
15 checkForIllegalPerms(thisJoinPoint);
16 }
17
18 private void checkSecMan() {
19 SecurityManager secMan = System.getSecurityManager();
20
21 if (secMan == null) {
22 // Security manager disabled
23 } else if (!secMan.equals(this.initSecMan)) {
24 // Security manager altered
25 }
26 }
27
28 private void checkForIllegalPerms(JoinPoint jp) {
29 Class<?> clazz = jp.getStaticPart().getSourceLocation().getWithinType();
30 PermissionCollection pc = clazz.getProtectionDomain().getPermissions();
31 Enumeration<Permission> perms = pc.elements();
32
33 while (perms.hasMoreElements()) {
34 Permission p = perms.nextElement();
35
36 if (!this.initPerms.implies(p)) {
37 // Incorrect permission
38 }
39 }
40 }
41
42 }

Figure 5: AspectJ instrumentation code

by JMD. The XML report also gives a malicious/be-
nign classification based on the behaviour detected by
the SecurityMonitor (in this case it is malicious,
due to the Java sandbox escape).

4 Evaluation

This section outlines our evaluation of JMD. We
specifically focus on determining JMD’s accuracy in
detecting malware that targets Java’s access control
mechanisms. A discussion on possible evasion strate-
gies is also provided.

4.1 Test Methodology

To test JMD’s accuracy in detecting Java malware we
collected a range of malware samples (targeting Java
versions 6 and 7) from a variety of publicly-available
sources. These sources included: Metasploit mod-
ules8; the Contagio blog9; and other computer secu-
rity blogs. This resulted in an initial sample set of
228 samples.

Each sample was uploaded to VirusTotal10 to de-
termine the CVE number of the vulnerability targeted
by the exploit. Where multiple VirusTotal scanners
returned different results, a manual investigation (e.g.
an Internet search for the hash and/or manual inspec-
tion of the sample) was used to determine the most
probable CVE the sample represented.

8http://www.metasploit.com
9http://contagiodump.blogspot.com

10http://www.virustotal.com

From these results, the sample set was curated to
remove broken samples and those that targeted out-
of-scope elements (as discussed in §3.1—e.g. the class
verifier and the Java native layer). The remaining
91 samples (which encompassed fourteen of the JRE
access control-related CVEs disclosed over the past
four years11) were labelled with the vulnerable JRE
version(s)— i.e. JRE 1.6u0 and/or JRE 1.7u0. Java
8 was not evaluated due to its relative immaturity.12

By testing JMD against the earliest releases of
Java 6 and 7, we ensured that (where our technique
was successful) JMD would detect exploits for which
patches were released partway through the Java ver-
sion’s lifecycle. The final list of samples is shown in
Table 2.

These 91 samples were used as input to JMD’s
instrumentation and dynamic analysis stages (see §4.3
for a discussion of our attempts to use the symbolic
execution stage in our evaluation). Dynamic analysis
was performed in both a stand-alone Ubuntu 12.04
32-bit sandbox VM and in Cuckoo Sandbox using a
Windows XP 32-bit sandbox VM. The results of these
analyses were collated and are the topic of discussion
in the following section.

11We attempted to quantify the total number of JRE CVEs from
this period related to access control vulnerabilities (as opposed to
vulnerability classes that are out-of-scope for JMD). However, we
could not find public information sources that exhaustively corre-
lated JRE CVEs with their vulnerability classes.

12At the time of writing, Java 7 is still offered as the default
download at https://www.java.com.
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<?xml version="1.0"?>
<jmdresults>

<jmdresult targetFile="/home/metasploit/java/multi/browser/java_jre17_jmxbean/VaZbkzEM.jar">
<result>malicious</result>
...
<notes>
<note>Sandbox Java Runtime: Java (TM) SE Runtime Environment</note>
<note>Sandbox Java Runtime Version: 1.7.0-b147</note>
<note>Sandbox Java VM: Java HotSpot(TM) 64-Bit Server VM</note>
<note>Sandbox Java VM Version: 21.0-b17</note>
<note>Sandbox OS Type: Linux</note>

</notes>
<classes>
<class classname="B">

<metadata>
<filename>B.class</filename>
<sourcefilename>B.java</sourcefilename>
<classformatversion>46.0</classformatversion>
<accessflags>ACC_PUBLIC|ACC_SUPER</accessflags>

<metadata>
<maliciouselements>

<maliciouselement>Unauthorised use of java.security.AllPermission &lt;all permissions&gtl &lt;all
actions&gt;</maliciouselement>

<maliciouselement>Unauthorised manipulation of SecurityManager: security manager has been disabled
</maliciouselement>

<maliciouselements>
</class>
...

</classes>
</jmdresult>

</jmdresults>

Figure 6: Sample XML report produced by JMD

Table 2: JMD evaluation sample set

Vulnerable JRE

CVE # samples 1.6u0 1.7u0

CVE-2012-0507 40 X X
CVE-2013-0422 17 X
CVE-2008-5353 8 X
CVE-2013-0431 6 X
CVE-2011-3544 5 X X
CVE-2010-0840 5 X
CVE-2010-0094 2 X
CVE-2012-4681 2 X X
CVE-2012-5076 2 X
CVE-2012-5088 1 X
CVE-2013-1488 1 X
CVE-2013-2423 1 X
CVE-2013-2460 1 X
CVE-2013-2465 1 X X

Total 92

4.2 Experimental Results and Discussion

Tables 3 and 4 show the number and percentage of
samples correctly identified as malicious by JMD. As
JMD detects exploits within the JVM layer (which is
independent of the underlying OS), we observed iden-
tical results in both sandbox environments. It is im-
portant to note that although Table 2 lists both JREs
as being vulnerable to CVE-2012-4681, the samples
we had for this CVE were compiled with Java 7 and
hence were unable to run in Java 6. Similarly, both
JREs are vulnerable to CVE-2013-2465, but the par-
ticular sample we had for this CVE (from Metasploit)
was only confirmed to work in Java 7.

JMD was able to achieve a 100% success rate for
ten of the fourteen CVEs in our sample set (across
both JREs tested). However, some samples remained
incorrectly classified by JMD. We subsequently ex-
amined these samples in greater detail.

CVE-2010-0094. The incorrectly classified

Table 3: Detection results for Java 6. This includes
the number and percentage of samples successfully
detected as malicious by JMD

CVE # detected % detected

CVE-2012-0507 37 93
CVE-2008-5353 8 100
CVE-2011-3544 3 60
CVE-2010-0840 5 100
CVE-2010-0094 1 50

Total 54 90.00

CVE-2010-0094 sample was unique in our sample set
in that it provides the user with an interactive GUI
(via a text field and submission button). All of our
other samples launch their exploit directly from the
applet’s init method (without requiring user inter-
action). Because this sample requires user interac-
tion, JMD was unable to reach the exploitation and
payload stages. Symbolic execution was also unable
to assist because SPF does not model graphical ele-
ments (as discussed in §3.3.1).

Additionally, JMD was unable to instrument a
particular method in this undetected CVE-2010-0094
sample. This was because the method was already ap-
proaching the maximum allowable method size, and
the extra AspectJ instrumentation code put it over
the limit13—the ramifications of this are discussed
further in §4.4.

CVE-2011-3544. This CVE relates to vulner-
abilities in the JRE’s JavaScript engine. Half of
the CVE-2011-3544 samples were incorrectly classi-
fied because they execute both their exploit and pay-
load in the JavaScript engine. This differs from the
detected samples, which only execute their exploit
(disabling of the security manager) in the JavaS-
cipt engine before returning execution to the applet
to deliver its payload (which JMD’s instrumentation

13Java methods are limited to a maximum of 64kB by the JVM
specification.
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Table 4: Detection results for Java 7. This includes
the number and percentage of samples successfully
detected as malicious by JMD

CVE # detected % detected

CVE-2012-0507 37 93
CVE-2013-0422 15 88
CVE-2013-0431 6 100
CVE-2011-3544 3 60
CVE-2012-4681 2 100
CVE-2012-5076 2 100
CVE-2012-5088 1 100
CVE-2013-1488 1 100
CVE-2013-2423 1 100
CVE-2013-2460 1 100
CVE-2013-2465 1 100

Total 70 90.91

correctly detects). For the SecurityMonitor to
detect the incorrectly classified samples, the JRE’s
JavaScipt engine must be instrumented in the same
way the sample is—this is beyond JMD’s scope.

CVE-2012-0507. Our initial testing found that
JMD could only detect nineteen (48%) of the CVE-
2012-0507 samples. After some investigation, we
found that this was due to many of the CVE-2012-
0507 samples embedding a payload class file inside
another class file as a byte array. This byte ar-
ray undergoes an XOR deobfuscation routine (thus
hiding the byte array’s true intent from cursory
static analysis) before being passed as an argu-
ment to ClassLoader.defineClass. This em-
bedded payload class is typically defined under an
unrestricted protection domain (i.e. a Protection
Domain with an AllPermission permissions ob-
ject), thus providing the payload with access to sen-
sitive resources and operations (e.g. write to the file
system, open a network connection, etc).

This privilege escalation was not detected
by the SecurityMonitor’s checkForIllegal
Perms method (as discussed in §3.4) because the ob-
fuscated inner payload classes were not being weaved
with our instrumentation code. In our initial imple-
mentation, we were only weaving precompiled byte-
code (i.e. .class files); classes that were obfuscated
and encoded in byte arrays (or by other means) and
loaded at run-time were not instrumented. As a re-
sult, JMD was not able to log access control violations
that were implemented in these inner payloads.

To rectify this issue, we added AspectJ’s load-time
weaving [13] functionality to JMD in order to instru-
ment classes as they are loaded by the JVM’s class
loader. This increased our detection rate for CVE-
2012-0507 samples from 48% to 93%.

4.3 Symbolic Execution Discussion

Unfortunately, JMD’s symbolic execution stage did
not produce the impact we had hoped it would. This
was due to a number of factors.

Firstly, the taint-based approach proposed in
§3.3.2 focuses on String objects as tainted data.
Therefore, we rely heavily on SPF’s ability to solve
string-based constraints. While much work has been
done to incorporate string-based constraints into
SPF [26], the functionality required for SPF to handle
many string methods remains unimplemented. For
example, we encountered malware that called the to
LowerCase, toCharArray and split string meth-
ods. We were able to implement symbolic handling

for some of these methods (such as toLowerCase)
ourselves, but others remain unimplemented due to
time constraints. We also frequently encountered
malware that converted String objects to arrays
(and vice versa). Unfortunately, we found SPF’s han-
dling of this conversion and support for arrays rela-
tively immature, resulting in unsolved constraints.

We also found that SPF had difficulties with
the more heavily-obfuscated samples, especially those
that made use of Java’s reflection APIs (e.g. to instan-
tiate classes, execute methods, etc.). SPF was often
unable to construct constraints in these cases, poten-
tially leaving execution paths unexplored.

Additionally, we found very few samples within
our evaluation sample set that attempted to hide their
payload behind a trigger condition. While obfusca-
tion to prevent static analysis was common (e.g. ran-
domising method names, field names and strings),
hiding malicious activity behind trigger conditions
(such as those discussed in §3.3 and [2]) was not. Our
sample set only included one sample that hid its be-
haviour behind a specific applet parameter.

More commonly, applet parameters were used to
directly inject metadata (e.g. they contained a URL
to connect to, a port to connect on, a specific file to
download, etc.) and were not used to construct con-
straints (i.e. they were not used at branch points to
drive execution down a particular code path). For the
one sample that did hide its exploit behind an applet
parameter, SPF was unable to solve its constraints
and derive a valid applet parameter value. (In this
particular case, the conversion of the applet parame-
ter String value into an array type prevented SPF
from solving the constraints.)

However, the symbolic execution stage did provide
useful information on payload creation and customi-
sation (e.g. how the malware determined the under-
lying OS, such as the example in Figure 4) and ap-
plet parameter names (although in most cases SPF
was unable to solve the required constraints and de-
rive the parameter values that would enable increased
code coverage during dynamic analysis).

4.4 Possible Evasion Strategies

Denial-of-service (DoS) attacks are possible on each
of JMD’s stages. The first DoS attack considered
here affects JMD’s symbolic execution stage. Path (or
state-space) explosion is a common problem for sym-
bolic execution engines [6, 16], and occurs when the
application contains a large number of branch points.
As the number of branch points grows, the number
of possible code paths increases exponentially. Each
new code path necessitates an increase in computa-
tional resources (both in time and memory) in order
to explore all paths and solve the constraints required
to execute those paths. It is therefore possible for
malware to hide an exploit from JMD’s symbolic ex-
ecution stage by embedding it within a complicated
code path (e.g. consisting of a very high number of
branch points) that only triggers under specific con-
ditions. In such a case, symbolic execution becomes
computationally infeasible, and the exploit’s trigger
conditions will not be derived. Thus, the exploit will
not trigger during dynamic analysis and will remain
undetected.

A DoS on JMD’s instrumentation stage is also pos-
sible, by exploiting the specified size constraints im-
posed on a Java class file. For example, bytecode
crafted with 64 kB methods (the maximum allowable
method size [14]) cannot be weaved with additional
code by JMD’s instrumentation stage. As such, any
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malicious activity performed by these methods may
go undetected during dynamic analysis.

Finally, it is possible for malware to examine it-
self to determine if it has been instrumented. For
example, the malware could calculate a hash of itself
at run-time and compare it to a hash calculated at
compile time (and stored in the bytecode). This com-
parison would return a different result (because the
code introduced by AspectJ would alter the malware’s
hash), leading the malware to infer that tampering
had occurred. Alternatively, the malware could use
the Java reflection API to determine whether any As-
pectJ classes had been woven into the bytecode. After
determining if it had been instrumented, the malware
could lie dormant and hence remain undetected dur-
ing dynamic analysis. (The application of symbolic
execution to Java’s reflection APIs could theoretically
be used to defeat these evasion strategies.)

5 Related Work

While much work has been undertaken into malware
detection in general, relatively little research has ex-
amined Java malware specifically.

The Jarhead tool developed by Schlumberger et
al. [28] uses static analysis and supervised machine
learning techniques to detect malicious Java applets.
Features are extracted from the Java bytecode and
supplied to a classifier that is able to classify a ma-
licious applet based on a training set of known mali-
cious and benign applets. These features range from
code metrics (e.g. the number of instructions and the
code’s cyclomatic complexity) to behavioural features
(e.g. extending the ClassLoader class and the use
of methods that are able to write files). A disadvan-
tage of using a supervised machine learning algorithm
is that the training data may be subject to overfitting.
This could prevent the detection of zero-day exploits
where either the relevant features have not been col-
lected or there are not enough training samples to
represent the new exploit technique. Additionally,
because feature extraction is performed statically, the
malware author may use obfuscation to hide key fea-
tures (although the presence of obfuscation itself was
a key feature in their results).

In [33], Wang proposed a dynamic analysis tool
that records calls to the core Java API during exe-
cution. To achieve this, the core Java API’s source
code is patched to record key method calls (e.g.
System.setSecurityManager) and then recom-
piled. Rules are defined for specific CVEs so an ex-
ploit’s API trace can be matched to a rule set and
hence a CVE. However, while this detects known
exploits it does little in detecting zero-day attacks.
Some heuristics for zero-day detection are proposed,
however they are not evaluated. Additionally, patch-
ing the core Java classes may be against the Java
license agreement.14

Soman et al. [30] proposed a similar technique, in
which security-related operations are logged as events
that are supplied to a signature-based intrusion detec-
tion system. However, the key differentiator between
this technique and Wang’s is that in [30] the JVM
is instrumented to log security-related events (as op-
posed to patching the Java API in [33]). This has the
advantage that system calls and calls to native code
can be logged and used to detect attacks outside of the
JVM. However, [30] still relies on a signature-based
mechanism for detecting attacks.

14Section F of the Oracle Binary Code License Agreement,
http://www.oracle.com/technetwork/java/javase/terms/
license/.

An alternate approach for containing (rather than
detecting) malicious Java applets was proposed by
Chiueh et al. in [3]. Chiueh et al. proposed Spout, a
transparent proxy that attempts to confine the dam-
age of a malicious Java applet to an untrusted, dis-
posable host (usually outside a firewall) that does
not store sensitive data and is not used for any crit-
ical purposes. Spout achieves this by separating the
application logic from the GUI component—the for-
mer executing on the disposable host and the latter
executing on the host requesting the applet. This
confines the malicious application logic to the dispos-
able host, minimising the effects of an exploit. A
key assumption in this approach is that “only the ap-
plication logic component can damage the host ma-
chine’s system resources” [3]. However, the authors
of [8] found that during the period from 2011 to 2013
the 2D and AWT subcomponents were the second
and fifth most vulnerable subcomponents in the Java
language respectively. This potentially leaves Spout
open to exploits that target vulnerabilities in these
subcomponents.

Symbolic execution for malware analysis has been
a popular research area [1, 2]. However, this has
typically focused on native x86-based malware; Java
malware has received comparatively little attention.
While the Java-based SPF has been used for a num-
ber of purposes (e.g. test input generation [25, 6]) to
our knowledge it has not been used in the context of
Java malware analysis and detection. Similarly, AOP
techniques have also previously been applied to the se-
curity domain (e.g. to replace insecure function calls
and log security-relevant data [32]). Once again, to
our knowledge AOP has not been used in the context
of Java malware detection.

6 Conclusions and Future Work

In this paper we have presented the Java Malware De-
tector (JMD), a hybrid approach that combines sym-
bolic execution, instrumentation and dynamic analy-
sis to detect malicious Java applications. We demon-
strated that it is possible to implement such a sys-
tem using a number of popular open-source soft-
ware platforms—specifically Java Pathfinder and As-
pectJ. Our evaluation on real-world malware sam-
ples shows that JMD was able to successfully detect
malware variants representing fourteen of the known
access control-related CVEs disclosed over the past
four years. While there are known limitations in
JMD’s detection capability, the design and extensibil-
ity of JMD’s instrumentation stage provides a plat-
form upon which our results can be built and im-
proved.

The application of symbolic execution to derive
trigger points did not yield much success, but this was
largely due to the incomplete state of SPF’s symbolic
String handling (see §4.3) and other issues which
could potentially be remediated by extra engineering
effort on SPF.

While JMD is successful in detecting the subver-
sion of Java’s access control mechanisms, there are
a number of potential avenues to explore that could
further expand JMD’s capabilities. These avenues in-
clude: remediating the evasion strategies discussed in
§4.4; adding symbolic handling implementations for
the full String API as well as other unimplemented
types in SPF; exploring additional trigger points via
symbolic analysis, such as date and time triggers and
network communication (e.g. receiving commands
from a botnet Command and Control server); and
extending the dynamic analysis engine to include at-
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tacks on the class verifier and Java native layer. Fur-
ther evaluation of JMD on additional samples could
also be performed.
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